📄 linhex_nb1.cpp
字号:
double xi,eta,zeta,jac; vector x(nne),y(nne),z(nne),w,gp; matrix gm,d(tncomp,tncomp); Mt->give_node_coord3d (x,y,z,eid); fillm (0.0,sm); for (ii=0;ii<nb;ii++){ allocm (ncomp[ii],ndofe,gm); for (jj=0;jj<nb;jj++){ if (intordsm[ii][jj]==0) continue; allocv (intordsm[ii][jj],w); allocv (intordsm[ii][jj],gp); gauss_points (gp.a,w.a,intordsm[ii][jj]); ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; for (i=0;i<intordsm[ii][jj];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][jj];j++){ eta=gp[j]; for (k=0;k<intordsm[ii][jj];k++){ zeta=gp[k]; // geometric matrices geom_matrix (gm,x,y,z,xi,eta,zeta,jac); Mm->matstiff (d,ipp); ipp++; jac*=w[i]*w[j]*w[k]; // contribution to the stiffness matrix of the element bdbjac (sm,gm,d,gm,jac); } } } destrv (gp); destrv (w); } destrm (gm); } // transformation of stiffness matrix ivector nodes (nne); Mt->give_elemnodes (eid,nodes); transf = Mt->locsystems (nodes); if (transf>0){ matrix tmat (ndofe,ndofe); transf_matrix (nodes,tmat); glmatrixtransf (sm,tmat); } }/** function computes stiffness %matrix of quadrilateral finite element function computes stiffness %matrix for geometrically nonlinear problems @param lcid - load case id @param eid - element id @param ri,ci - row and column indices @param sm - stiffness %matrix @param x,y - vectors of nodal coordinates JK, 21.9.2005*/void linhex::gnl_stiffness_matrix (long lcid,long eid,long ri,long ci,matrix &sm){ long i,j,k,ipp; double xi,eta,zeta,jac,jac2; ivector cn(ndofe); vector w,gp,sig(tncomp),r(ndofe),x(nne),y(nne),z(nne); matrix gm(tncomp,ndofe),grm(9,ndofe),d(tncomp,tncomp),s(9,9); // node coordinates Mt->give_node_coord3d (x,y,z,eid); // code numbers of element Mt->give_code_numbers (eid,cn.a); // nodal displacements eldispl (lcid,eid,r.a,cn.a,ndofe); // component setting to zero fillm (0.0,sm); // array for weights of integration points allocv (intordsm[0][0],w); // array for coordinates of integration points allocv (intordsm[0][0],gp); // coordinates and weights of integration points gauss_points (gp.a,w.a,intordsm[0][0]); // number of the first integration point on element ipp=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[0][0];i++){ xi=gp[i]; for (j=0;j<intordsm[0][0];j++){ eta=gp[j]; for (k=0;k<intordsm[0][0];k++){ zeta=gp[k]; // // linear stiffness matrix and inital deformation matrix // // strain-displacement matrix gngeom_matrix (gm,r,x,y,z,xi,eta,zeta,jac); // stiffness matrix of the material Mm->matstiff (d,ipp); jac*=w[i]*w[j]*w[k]; // contribution to the stiffness matrix of the element bdbjac (sm,gm,d,gm,jac); // // initial stress matrix // // gradient matrix gnl_grmatrix (grm,x,y,z,xi,eta,zeta,jac2); // stresses Mm->givestress (lcid,ipp,sig); s[0][0]=sig[0]; s[0][1]=sig[5]; s[0][2]=sig[4]; s[1][0]=sig[5]; s[1][1]=sig[1]; s[1][2]=sig[3]; s[2][0]=sig[4]; s[2][1]=sig[3]; s[2][2]=sig[2]; s[3][3]=sig[0]; s[3][4]=sig[5]; s[3][5]=sig[4]; s[4][3]=sig[5]; s[4][4]=sig[1]; s[4][5]=sig[3]; s[5][3]=sig[4]; s[5][4]=sig[3]; s[5][5]=sig[2]; s[6][6]=sig[0]; s[6][7]=sig[5]; s[6][8]=sig[4]; s[7][6]=sig[5]; s[7][7]=sig[1]; s[7][8]=sig[3]; s[8][6]=sig[4]; s[8][7]=sig[3]; s[8][8]=sig[2]; // contribution to the stiffness matrix of the element bdbjac (sm,grm,s,grm,jac); ipp++; } } } destrv (gp); destrv (w); }/** function assembles resulting stiffness matrix of the element @param lcid - load case id @param eid - element id @param sm - stiffness matrix JK, 9.5.2002*/void linhex::res_stiffness_matrix (long lcid,long eid,matrix &sm){ gl_stiffness_matrix (eid,0,0,sm); //gnl_stiffness_matrix (lcid,eid,0,0,sm);}/** function computes mass matrix @param eid - number of element @param mm - mass matrix 19.7.2001*/void linhex::mass_matrix (long eid,matrix &mm){ long i,j,k; double jac,xi,eta,zeta,rho; ivector nodes (nne); vector x(nne),y(nne),z(nne),w(intordmm),gp(intordmm),dens(nne); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mc->give_density (eid,nodes,dens); Mt->give_node_coord3d (x,y,z,eid); gauss_points (gp.a,w.a,intordmm); fillm (0.0,mm); for (i=0;i<intordmm;i++){ xi=gp[i]; for (j=0;j<intordmm;j++){ eta=gp[j]; for (k=0;k<intordmm;k++){ zeta=gp[k]; jac_3d (jac,x,y,z,xi,eta,zeta); jac=fabs(jac); bf_matrix (n,xi,eta,zeta); rho = approx (xi,eta,zeta,dens); jac*=w[i]*w[j]*w[k]*rho; nnj (mm.a,n.a,jac,n.m,n.n); } } } }/** function computes load matrix @param eid - number of element @param lm - load matrix 25.7.2001*/void linhex::load_matrix (long eid,matrix &lm){ long i,j,k; double jac,xi,eta,zeta,w1,w2,w3; ivector nodes (nne); vector x(nne),y(nne),z(nne),w(intordmm),gp(intordmm); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mt->give_node_coord3d (x,y,z,eid); gauss_points (gp.a,w.a,intordmm); fillm (0.0,lm); for (i=0;i<intordmm;i++){ xi=gp[i]; w1=w[i]; for (j=0;j<intordmm;j++){ eta=gp[j]; w2=w[j]; for (k=0;k<intordmm;k++){ zeta=gp[k]; w3=w[k]; jac_3d (jac,x,y,z,xi,eta,zeta); bf_matrix (n,xi,eta,zeta); jac*=w1*w2*w3; //jac=fabs(jac); //if (jac<0.0) fprintf (stderr,"\n zaporny jakobian ve funkci load_matrix"); nnj (lm.a,n.a,jac,n.m,n.n); } } } }/** function computes strains at integration points @param lcid - load case id @param eid - element id JK*/void linhex::res_mainip_strains (long lcid,long eid){ long i; ivector nodes(nne),cn(ndofe); vector x(nne),y(nne),z(nne),r(ndofe),aux; matrix tmat; Mt->give_elemnodes (eid,nodes); Mt->give_node_coord3d (x,y,z,eid); Mt->give_code_numbers (eid,cn.a); eldispl (lcid,eid,r.a,cn.a,ndofe); // transformation of displacement vector long transf = Mt->locsystems (nodes); if (transf>0){ allocv (ndofe,aux); allocm (ndofe,ndofe,tmat); transf_matrix (nodes,tmat); locglobtransf (aux,r,tmat); copyv (aux,r); destrv (aux); destrm (tmat); } gl_mainip_strains (lcid,eid,0,0,x,y,z,r); //gnl_mainip_strains (lcid,eid,0,0,x,y,z,r); }/** function computes block of strains at integration points of element @param lcid - load case id @param eid - element id @param ri - row index @param ci - column index @param x,y,z - %vectors of nodal coordinates @param r - %vector of nodal displacements 10.5.2002*/void linhex::gl_mainip_strains (long lcid,long eid,long ri,long ci,vector &x,vector &y,vector &z,vector &r){ long i,j,k,ii,ipp; double xi,eta,zeta,jac; vector gp,w,eps; matrix gm; for (ii=0;ii<nb;ii++){ allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); allocv (ncomp[ii],eps); allocm (ncomp[ii],ndofe,gm); gauss_points (gp.a,w.a,intordsm[ii][ii]); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; for (k=0;k<intordsm[ii][ii];k++){ zeta=gp[k]; geom_matrix (gm,x,y,z,xi,eta,zeta,jac); mxv (gm,r,eps); Mm->storestrain (lcid,ipp,cncomp[ii],eps); ipp++; } } } destrm (gm); destrv (w); destrv (gp); destrv (eps); }}/** function computes strains at integration points of element function is used in geometrically linear problems @param lcid - load case id @param eid - element id @param ri,ci - row and column indices @param ii - number of block @param x,y,z - arrays with node coordinates @param r - %vector of nodal displacements JK, 24.9.2005*/void linhex::gnl_mainip_strains (long lcid,long eid,long ri,long ci,vector &x,vector &y,vector &z,vector &r){ long i,j,k,ipp; double xi,eta,zeta,jac,b11r,b12r,b13r,b21r,b22r,b23r,b31r,b32r,b33r; vector gp,w,eps; vector b11(ndofe),b12(ndofe),b13(ndofe),b21(ndofe),b22(ndofe),b23(ndofe),b31(ndofe),b32(ndofe),b33(ndofe); allocv (intordsm[0][0],gp); allocv (intordsm[0][0],w); allocv (tncomp,eps); gauss_points (gp.a,w.a,intordsm[0][0]); ipp=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[0][0];i++){ xi=gp[i]; for (j=0;j<intordsm[0][0];j++){ eta=gp[j]; for (k=0;k<intordsm[0][0];k++){ zeta=gp[k]; bvectors (x,y,z,xi,eta,zeta,jac,b11,b12,b13,b21,b22,b23,b31,b32,b33); scprd (b11,r,b11r); scprd (b12,r,b12r); scprd (b13,r,b13r); scprd (b21,r,b21r); scprd (b22,r,b22r); scprd (b23,r,b23r); scprd (b31,r,b31r); scprd (b32,r,b32r); scprd (b33,r,b33r); eps[0] = b11r + 0.5*b11r*b11r + 0.5*b21r*b21r + 0.5*b31r*b31r; eps[1] = b22r + 0.5*b12r*b12r + 0.5*b22r*b22r + 0.5*b32r*b32r; eps[2] = b33r + 0.5*b13r*b13r + 0.5*b23r*b23r + 0.5*b33r*b33r; eps[3] = b23r+b32r + b12r*b13r + b22r*b23r + b32r*b33r; eps[4] = b31r+b13r + b13r*b11r + b23r*b21r + b33r*b31r; eps[5] = b12r+b21r + b11r*b12r + b21r*b22r + b31r*b32r; Mm->storestrain (lcid,ipp,eps); ipp++; } } } destrv (eps); destrv (w); destrv (gp); }/** function computes strains in nodes of element @param lcid - load case id @param eid - element id 10.5.2002*/void linhex::nod_strains_ip (long lcid,long eid,long ri,long ci){ long i,j; ivector ipnum(nne),nod(nne); vector eps(tncomp); // numbers of integration points closest to nodes nodipnum (eid,ri,ci,ipnum); // node numbers of the element Mt->give_elemnodes (eid,nod); for (i=0;i<nne;i++){ // strains at the closest integration point Mm->givestrain (lcid,ipnum[i],eps); // storage of strains to the node j=nod[i]; Mt->nodes[j].storestrain (lcid,0,eps); }}/** function computes nodal strains directly @param lcid - load case id @param eid - element id @param stra - array for strain components JK, 26.9.2004*/void linhex::nod_strains_comp (long lcid,long eid,double **stra){ long i,j; double jac; ivector cn(ndofe),nodes(nne); vector x(nne),y(nne),z(nne),nxi(nne),neta(nne),nzeta(nne),r(ndofe),eps(tncomp),aux; matrix tmat,gm(tncomp,ndofe); // node coordinates Mt->give_node_coord3d (x,y,z,eid); // node numbers Mt->give_elemnodes (eid,nodes); // code numbers of the element Mt->give_code_numbers (eid,cn.a); // nodal displacements eldispl (lcid,eid,r.a,cn.a,ndofe); // transformation of displacement vector long transf = Mt->locsystems (nodes); if (transf>0){ allocv (ndofe,aux); allocm (ndofe,ndofe,tmat); transf_matrix (nodes,tmat); locglobtransf (aux,r,tmat); copyv (aux,r); destrv (aux); destrm (tmat); } // natural coordinates of element nodes nodecoord (nxi,neta,nzeta); // loop over nodes for (i=0;i<nne;i++){ // geometric matrix geom_matrix (gm,x,y,z,nxi[i],neta[i],nzeta[i],jac); // strain computation mxv (gm,r,eps); for (j=0;j<eps.n;j++){ stra[i][j]=eps[j]; } }}/** function computes strains on element @param val - array containing strains on element @param lcid - load case id @param eid - element id 19.9.2002*//* zruseno 26.9.2004void linhex::elem_strains (double **stra,long lcid,long eid,long ri,long ci){ long i,j,k,ii,ipp; double xi,eta,zeta,*lsm,*lhs,*rhs; vector nxi(nne),neta(nne),nzeta(nne),gp,w,eps,natcoord(3); lsm = new double [16]; nodecoord (nxi,neta,nzeta); for (ii=0;ii<nb;ii++){ allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); allocv (ncomp[ii],eps); lhs = new double [ncomp[ii]*4]; rhs = new double [ncomp[ii]*4]; gauss_points (gp.a,w.a,intordsm[ii][ii]); nullv (lsm,16); nullv (rhs,ncomp[ii]*4); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; for (k=0;k<intordsm[ii][ii];k++){ zeta=gp[k]; Mm->givestrain (lcid,ipp,cncomp[ii],ncomp[ii],eps); natcoord[0]=xi; natcoord[1]=eta; natcoord[2]=zeta; matassem_lsm (lsm,natcoord); rhsassem_lsm (rhs,natcoord,eps); ipp++; } } } solve_lsm (lsm,lhs,rhs,Mp->zero,4,ncomp[ii]); nodal_values (stra,nxi,neta,nzeta,lhs,3,cncomp[ii],ncomp[ii]); delete [] lhs; delete [] rhs; destrv (eps); destrv (w); destrv (gp); } delete [] lsm;}*//** function computes strains in arbitrary point on element @param lcid - load case id @param eid - element id @param xi, eta, zeta - natural coordinates of the point @param fi - first index @param ncomp - number of components @param eps - array containing strains 11.5.2002*/void linhex::appstrain (long lcid,long eid,double xi,double eta,double zeta,long fi,long ncomp,vector &eps){ long i,j,k; ivector nod(nne); vector nodval(nne); if (ncomp != eps.n){ fprintf (stderr,"\n\n wrong interval of indices in function strain (%s, line %d).\n",__FILE__,__LINE__); abort (); } Mt->give_elemnodes (eid,nod); k=0; for (i=fi;i<fi+ncomp;i++){ for (j=0;j<nne;j++){ nodval[j]=Mt->nodes[nod[j]].strain[lcid*tncomp+i]; } eps[k]=approx (xi,eta,zeta,nodval); k++; }}/**
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -