📄 plelemlt.cpp
字号:
}void planeelemlt::appstrain (long lcid,long eid,double xi,double eta,long fi,long ncomp,vector &eps){ long i,j,k; ivector nodes; vector nodval(nne); if (ncomp != eps.n){ fprintf (stderr,"\n\n wrong interval of indices in function strain (%s, line %d).\n",__FILE__,__LINE__); abort (); } allocv (nne,nodes); Mt->give_elemnodes (eid,nodes); k=0; for (i=fi;i<fi+ncomp;i++){ for (j=0;j<nne;j++){ nodval[j]=Mt->nodes[nodes[j]].strain[lcid*tncomp+i]; } eps[k]=approx_nat (xi,eta,nodval); k++; } destrv (nodes);}void planeelemlt::strains (long lcid,long eid,long ri,long ci){ long i,naep,ncp,sid; double **stra; vector coord,eps; if (Mp->strainaver==0){ stra = new double* [nne]; for (i=0;i<nne;i++){ stra[i] = new double [tncomp]; } elem_strains (stra,lcid,eid,ri,ci); } switch (Mm->stra.tape[eid]){ case nowhere:{ break; } case intpts:{ //allip_strains (stra,lcid,eid,ri,ci); break; } case enodes:{ break; } case userdefined:{ // number of auxiliary element points naep = Mm->stra.give_naep (eid); ncp = Mm->stra.give_ncomp (eid); sid = Mm->stra.give_sid (eid); allocv (ncp,eps); allocv (2,coord); for (i=0;i<naep;i++){ Mm->stra.give_aepcoord (sid,i,coord); if (Mp->strainaver==0) appval (coord[0],coord[1],0,ncp,eps,stra); if (Mp->strainaver==1) appstrain (lcid,eid,coord[0],coord[1],0,ncp,eps); Mm->stra.storevalues(lcid,eid,i,eps); } destrv (eps); destrv (coord); break; } default:{ fprintf (stderr,"\n\n unknown strain point is required in function planeelemlt::strains (%s, line %d).\n",__FILE__,__LINE__); } } if (Mp->strainaver==0){ for (i=0;i<nne;i++){ delete [] stra[i]; } delete [] stra; }}/** function computes strains in arbitrary point on element @param xi, eta - natural coordinates of the point @param eps - array containing strains @param val - array containing values on element 11.5.2002*/void planeelemlt::appval (double xi,double eta,long fi,long nc,vector &eps,double **val){ long i,j,k; vector nodval; k=0; allocv (nne,nodval); for (i=fi;i<fi+nc;i++){ for (j=0;j<nne;j++){ nodval[j]=val[j][i]; } eps[k]=approx_nat (xi,eta,nodval); k++; } destrv (nodval);}/** function computes stresses at integration points of element stresses are computed by material models @param lcid - load case id @param eid - element id @param ri - row index @param ci - column index JK, 10.5.2002*/void planeelemlt::ip_stresses (long lcid,long eid,long ri,long ci){ long ipp; ipp=Mt->elements[eid].ipp[ri][ci]; // computation of correct stresses if (Mp->strcomp==1) Mm->computenlstresses (ipp);}/** function computes stresses at integration points of element stresses are computed from strains with the help of elastic stiffness @param lcid - load case id @param eid - element id @param ri - row index @param ci - column index JK, 27.11.2006*/void planeelemlt::ip_elast_stresses (long lcid,long eid,long ri,long ci){ long ipp; vector eps(tncomp),sig(tncomp); matrix d(tncomp,tncomp); // stiffness matrix of the material Mm->matstiff (d,ipp); // strains Mm->givestrain (lcid,ipp,eps); // elastic stresses mxv (d,eps,sig); Mm->storestress (lcid,ipp,sig);}void planeelemlt::nod_stresses (long lcid,long eid,long ri,long ci){ long ipp; double xi,eta,*lsm,*lhs,*rhs; vector nxi(nne),neta(nne),eps,epst,epstt,sig,natcoord(2); ivector nodes(nne); matrix d(tncomp,tncomp); lsm = new double [9]; // natural coordinates of element nodes // (function is from the file GEFEL/ordering.cpp) nodcoord_planelt (nxi,neta); Mt->give_elemnodes (eid,nodes); allocv (ncomp[0],sig); lhs = new double [ncomp[0]*3]; rhs = new double [ncomp[0]*3]; nullv (lsm,9); nullv (rhs,ncomp[0]*3); ipp=Mt->elements[eid].ipp[ri][ci]; Mm->matstiff (d,ipp); fillv (0.0,sig); allocv (ncomp[0],eps); xi=1.0/3.0; eta=1.0/3.0; if (Mp->strainaver==0) Mm->givestrain (lcid,ipp,cncomp[0],ncomp[0],eps); if (Mp->strainaver==1) appstrain (lcid,eid,xi,eta,cncomp[0],ncomp[0],eps); /* if (Mt->elements[eid].presctemp==1){ allocv (tncomp,epstt); tempstrains (lcid,eid,ipp,xi,eta,epstt); allocv (ncomp[0],epst); extract (epst,epstt,cncomp[0],ncomp[0]); subv (eps,epst,eps); destrv (epst); destrv (epstt); } */ mxv (d,eps,sig); natcoord[0]=xi; natcoord[1]=eta; matassem_lsm (lsm,natcoord); rhsassem_lsm (rhs,natcoord,sig); solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[0]); Mt->stress_nodal_values (nodes,nxi,neta,nxi,lhs,2,cncomp[0],ncomp[0],lcid); delete [] lhs; delete [] rhs; destrv (sig); destrv (eps); delete [] lsm;}void planeelemlt::elem_stresses (double **stra,double **stre,long lcid,long eid,long ri,long ci){ long ipp; double xi,eta,*lsm,*lhs,*rhs; vector nxi(nne),neta(nne),eps,epst,epstt,sig,natcoord(2); ivector nodes(nne); matrix d(tncomp,tncomp); lsm = new double [9]; // natural coordinates of element nodes // (function is from the file GEFEL/ordering.cpp) nodcoord_planelt (nxi,neta); Mt->give_elemnodes (eid,nodes); allocv (ncomp[0],sig); lhs = new double [ncomp[0]*3]; rhs = new double [ncomp[0]*3]; nullv (lsm,9); nullv (rhs,ncomp[0]*3); ipp=Mt->elements[eid].ipp[ri][ci]; xi=1.0/3.0; eta=1.0/3.0; Mm->matstiff (d,ipp); allocv (tncomp,eps); if (Mp->strainaver==0) appval (xi,eta,0,tncomp,eps,stra); if (Mp->strainaver==1) appstrain (lcid,eid,xi,eta,cncomp[0],ncomp[0],eps); /* if (Mt->elements[eid].presctemp==1){ allocv (tncomp,epstt); tempstrains (lcid,eid,ipp,xi,eta,epstt); allocv (ncomp[0],epst); extract (epst,epstt,cncomp[0],ncomp[0]); subv (eps,epst,eps); destrv (epst); destrv (epstt); } */ mxv (d,eps,sig); natcoord[0]=xi; natcoord[1]=eta; matassem_lsm (lsm,natcoord); rhsassem_lsm (rhs,natcoord,sig); solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[0]); nodal_values (stre,nxi,neta,nxi,lhs,2,cncomp[0],ncomp[0]); delete [] lhs; delete [] rhs; destrv (sig); destrv (eps); delete [] lsm;}/** function computes stresses in arbitrary point on element @param eid - element id @param xi, eta - natural coordinates of the point @param fi,li - first and last indices @param sig - array containing stresses 11.5.2002*/void planeelemlt::appstress (long lcid,long eid,double xi,double eta,long fi,long ncomp,vector &sig){ long i,j,k; ivector nodes; vector nodval; if (ncomp != sig.n){ fprintf (stderr,"\n\n wrong interval of indices in function stress (%s, line %d).\n",__FILE__,__LINE__); abort (); } allocv (nne,nodes); allocv (nne,nodval); Mt->give_elemnodes (eid,nodes); k=0; for (i=fi;i<fi+ncomp;i++){ for (j=0;j<nne;j++){ nodval[j]=Mt->nodes[nodes[j]].stress[lcid*tncomp+i]; } sig[k]=approx_nat (xi,eta,nodval); k++; } destrv (nodes); destrv (nodval);}void planeelemlt::stresses (long lcid,long eid,long ri,long ci){ long i,naep,ncp,sid; double **stra,**stre; vector coord,sig; if (Mp->stressaver==0){ stra = new double* [nne]; stre = new double* [nne]; for (i=0;i<nne;i++){ stra[i] = new double [tncomp]; stre[i] = new double [tncomp]; } elem_strains (stra,lcid,eid,ri,ci); elem_stresses (stra,stre,lcid,eid,ri,ci); } switch (Mm->stre.tape[eid]){ case nowhere:{ break; } case intpts:{ //allip_stresses (stre,lcid,eid,ri,ci); break; } case enodes:{ break; } case userdefined:{ // number of auxiliary element points naep = Mm->stre.give_naep (eid); ncp = Mm->stre.give_ncomp (eid); sid = Mm->stre.give_sid (eid); allocv (ncp,sig); allocv (2,coord); for (i=0;i<naep;i++){ Mm->stre.give_aepcoord (sid,i,coord); if (Mp->stressaver==0) appval (coord[0],coord[1],0,ncp,sig,stre); if (Mp->stressaver==1) appstress (lcid,eid,coord[0],coord[1],0,ncp,sig); Mm->stre.storevalues(lcid,eid,i,sig); } destrv (sig); destrv (coord); break; } default:{ fprintf (stderr,"\n\n unknown stress point is required in function planeelemlq::stresses (%s, line %d).\n",__FILE__,__LINE__); } } if (Mp->stressaver==0){ for (i=0;i<nne;i++){ delete [] stra[i]; delete [] stre[i]; } delete [] stra; delete [] stre; }}void planeelemlt::nod_others (long lcid,long eid,long ri,long ci){ long ipp, i, ncomp; double *lsm,*lhs,*rhs; vector nxi(nne),neta(nne),other,aux,natcoord(2); ivector nodes(nne); // natural coordinates of element nodes // (function is from the file GEFEL/ordering.cpp) nodcoord_planelt (nxi,neta); Mt->give_elemnodes (eid,nodes); ipp=Mt->elements[eid].ipp[ri][ci]; ncomp = Mm->ip[ipp].ncompother; allocv (ncomp,other); lhs = new double [ncomp*3]; rhs = new double [ncomp*3]; lsm = new double [9]; nullv (lsm,9); nullv (rhs,ncomp*3); for (i = 0;i < ncomp; i++) other[i] = Mm->ip[ipp].eqother[i]; natcoord[0]=1.0/3.0; natcoord[1]=1.0/3.0; matassem_lsm (lsm,natcoord); rhsassem_lsm (rhs,natcoord,other); solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp); Mt->other_nodal_values (nodes,nxi,neta,nxi,lhs,2,0,ncomp,lcid); delete [] lsm; delete [] lhs; delete [] rhs; destrv (other); destrv (nodes);}/** function computes correct stresses at integration points on element @param lcid - number of load case @param eid - element id @param ri,ci - row and column indices JK, 27.11.2006*/void planeelemlt::compute_nlstress (long lcid,long eid,long ri,long ci){ long ipp; ipp=Mt->elements[eid].ipp[ri][ci]; // computation of correct stresses if (Mp->strcomp==1) Mm->computenlstresses (ipp); }/** function computes nonlocal correct stresses at integration points on element @param lcid - number of load case @param eid - element id @param ri,ci - row and column indices JK, 27.11.2006*/void planeelemlt::compute_nonloc_nlstress (long lcid,long eid,long ri,long ci){ long ipp; ipp=Mt->elements[eid].ipp[ri][ci]; // computation of correct stresses if (Mp->strcomp==1) Mm->compnonloc_nlstresses (ipp); }/** function computes nonlocal correct stresses at integration points on element @param lcid - number of load case @param eid - element id @param ri,ci - row and column indices JK, 27.11.2006*/void planeelemlt::compute_eigstress (long lcid,long eid,long ri,long ci){ long ipp; vector eigstr(tncomp),sig(tncomp); matrix d(tncomp,tncomp); ipp=Mt->elements[eid].ipp[ri][ci]; Mm->giveeigstrain (ipp,eigstr); // matrix of stiffness of the material Mm->matstiff (d,ipp); mxv (d,eigstr,sig); Mm->storeeigstress (ipp,sig);}/** function integrates selected quantity over the finite element it results in nodal values @param iq - type of integrated quantity (see alias.h) @param lcid - number of load case @param eid - element id @param ri,ci - row and column indices @param nv - nodal values @param x,y - node coordinates JK, 27.11.2006*/void planeelemlt::elem_integration (integratedquant iq,long lcid,long eid,long ri,long ci,vector &nv,vector &x,vector &y){ long ipp; double xi,eta,det,thick; ivector nodes(nne); vector t(nne),ipv(tncomp),contr(ndofe); matrix gm(tncomp,ndofe); Mc->give_thickness (eid,nodes,t); fillv (0.0,nv); ipp=Mt->elements[eid].ipp[ri][ci]; xi=1.0/3.0; eta=1.0/3.0; thick = approx_nat (xi,eta,t); switch (iq){ case locstress:{ // stress reading from integration point Mm->givestress (lcid,ipp,ipv); break; } case nonlocstress:{ // stress reading from integration point Mm->givestress (lcid,ipp,ipv); break; } case eigstress:{ // eigenstress reading from integration point Mm->giveeigstress (ipp,ipv); break; } default:{ fprintf (stderr,"\n\n unknown type of quantity is required in function plelemlt::elem_integration (file %s, line %d).\n",__FILE__,__LINE__); } } // strain-displacement (geometric) matrix geom_matrix (gm,x,y); // contribution to the nodal values mtxv (gm,ipv,contr); // det is equal to double area of the element det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]); cmulv (det*thick/2.0,contr); // summation addv(contr,nv,nv);}/** function computes nodal forces caused by eigenstrains eigenstrain expresses e.g. temperature strains @param lcid - load case id @param eid - element id @param nfor - array containing nodal forces JK, 27.11.2006*/void planeelemlt::res_eigstrain_forces (long lcid,long eid,vector &nfor){ long transf; ivector nodes (nne); vector v(ndofe),x(nne),y(nne); Mt->give_node_coord2d (x,y,eid); eigstrain_forces (lcid,eid,0,0,nfor,x,y);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -