⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 plelemlt.cpp

📁 Finite element program for mechanical problem. It can solve various problem in solid problem
💻 CPP
📖 第 1 页 / 共 3 页
字号:
#include "plelemlt.h"#include "global.h"#include "globmat.h"#include "genfile.h"#include "adaptivity.h"#include "node.h"#include "element.h"#include "loadcase.h"#include "gadaptivity.h"#include "intpoints.h"#include <stdlib.h>#include <math.h>planeelemlt::planeelemlt (void){  long i,j;  //  number nodes on element  nne=3;  //  number of DOFs on element  ndofe=6;  //  number of strain/stress components  tncomp=3;  //  number of functions approximated  napfun=2;  //  order of numerical integration of mass matrix  intordmm=3;  //  number of edges on element  ned=3;  //  number of nodes on one edge  nned=2;  //  order of numerical integration on element edges (boundaries)  intordb=2;    //  number of blocks (parts of geometric matrix)  nb=1;  //  number of strain/stress components  ncomp = new long [nb];  ncomp[0]=3;  //  cumulative number of components approximated  cncomp = new long [nb];  cncomp[0]=0;  //  number of integration points  //  order of numerical integration of stiffness matrix  nip = new long* [nb];  intordsm = new long* [nb];  for (i=0;i<nb;i++){    nip[i] = new long [nb];    intordsm[i] = new long [nb];  }    nip[0][0]=1;  //  total number of integration points  tnip=0;  for (i=0;i<nb;i++){    for (j=0;j<nb;j++){      tnip+=nip[i][j];    }  }  intordsm[0][0]=1;}planeelemlt::~planeelemlt (void){  long i;    for (i=0;i<nb;i++){    delete [] nip[i];    delete [] intordsm[i];  }  delete [] nip;  delete [] intordsm;    delete [] ncomp;  delete [] cncomp;}void planeelemlt::eleminit (long eid){  long ii,jj;  Mt->elements[eid].nb=nb;  Mt->elements[eid].intordsm = new long* [nb];  Mt->elements[eid].nip = new long* [nb];  for (ii=0;ii<nb;ii++){    Mt->elements[eid].intordsm[ii] = new long [nb];    Mt->elements[eid].nip[ii] = new long [nb];    for (jj=0;jj<nb;jj++){      Mt->elements[eid].intordsm[ii][jj]=intordsm[ii][jj];      Mt->elements[eid].nip[ii][jj]=nip[ii][jj];    }  }}/**   function approximates function defined by nodal values   area coordinates are used      @param areacoord - vector containing area coordinates   @param nodval - nodal values      JK*/double planeelemlt::approx (vector &areacoord,vector &nodval){  double f;  scprd (areacoord,nodval,f);  return f;}/**   function approximates function defined by nodal values   natural coordinates are used      @param xi,eta - natural coordinates   @param nodval - nodal values      JK*/double planeelemlt::approx_nat (double xi,double eta,vector &nodval){  double f;  vector areacoord(3);  //  conversion of natural coordinates to area coordinates  areacoord[0]=xi;  areacoord[1]=eta;  areacoord[2]=1.0-areacoord[0]-areacoord[1];  scprd (areacoord,nodval,f);  return f;}/**   function returns %matrix of base function   @param n - %matrix of approximation functions   @param xi,eta - natural coordinates      JK, 17.8.2001*/void planeelemlt::bf_matrix (matrix &n,double xi,double eta){  vector bf(nne);  bf_lin_3_2d (bf.a,xi,eta);  fillm (0.0,n);  n[0][0]=bf[0];  n[0][2]=bf[1];  n[0][4]=bf[2];    n[1][1]=bf[0];  n[1][3]=bf[1];  n[1][5]=bf[2];}/**   function assembles strain-displacement (geometric) %matrix      @param gm - geometric %matrix   @param x,y - node coordinates      JK, 17.8.2001*/void planeelemlt::geom_matrix (matrix &gm,vector &x,vector &y){  double det;  vector b(3),c(3);    //  det is equal to double area of the element  det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]);  plsb (b.a,y.a,det);  plsc (c.a,x.a,det);    fillm (0.0,gm);  gm[0][0]=b[0];  gm[0][2]=b[1];  gm[0][4]=b[2];    gm[1][1]=c[0];  gm[1][3]=c[1];  gm[1][5]=c[2];    gm[2][0]=c[0];  gm[2][1]=b[0];  gm[2][2]=c[1];  gm[2][3]=b[1];  gm[2][4]=c[2];  gm[2][5]=b[2];}/**   function assembles transformation %matrix from local nodal coordinate   system to the global coordinate system x_g = T x_l      @param inodes - array containing node numbers   @param tmat - transfomation %matrix      JK, 17.8.2001*/void planeelemlt::transf_matrix (ivector &nodes,matrix &tmat){  long i,n,m;  fillm (0.0,tmat);  n=nodes.n;  m=tmat.m;  for (i=0;i<m;i++){    tmat[i][i]=1.0;  }    for (i=0;i<n;i++){    if (Mt->nodes[nodes[i]].transf>0){      tmat[i*2][i*2]   = Mt->nodes[nodes[i]].e1[0];  tmat[i*2][i*2+1]   = Mt->nodes[nodes[i]].e2[0];      tmat[i*2+1][i*2] = Mt->nodes[nodes[i]].e1[1];  tmat[i*2+1][i*2+1] = Mt->nodes[nodes[i]].e2[1];    }  }}/**   function computes stiffness %matrix of plane stress triangular   finite element with linear approximation functions   @param eid - element id   @param ri,ci - row and column indices   @param sm - stiffness %matrix   @param x,y - node coordinates      JK, 17.8.2001*/void planeelemlt::stiffness_matrix (long eid,long ri,long ci,matrix &sm,vector &x,vector &y){  long ipp;  double xi,eta,jac,det,thick;  ivector nodes(nne);  vector t(nne);  matrix gm(tncomp,ndofe),d(tncomp,tncomp);  //  element nodes  Mt->give_elemnodes (eid,nodes);  //  thickness of the element  Mc->give_thickness (eid,nodes,t);  //  det is equal to double area of the element  det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]);    xi=1.0/3.0;  eta=1.0/3.0;  fillm (0.0,sm);  ipp=Mt->elements[eid].ipp[ri][ci];    // geometric matrix  geom_matrix (gm,x,y);    //  stiffness matrix of material  Mm->matstiff (d,ipp);    thick = approx_nat (xi,eta,t);    //  det is equal to double area of the element  jac=thick*det/2.0;    //  contribution to the stiffness matrix of the element  bdbj (sm.a,gm.a,d.a,jac,gm.m,gm.n);}/**   function computes stiffness %matrix of plane stress triangular   finite element with linear approximation functions   @param eid - element id   @param sm - stiffness %matrix      JK, 17.8.2001*/void planeelemlt::res_stiffness_matrix (long eid,matrix &sm){  long transf;  ivector nodes(nne);  vector x(nne),y(nne);  Mt->give_node_coord2d (x,y,eid);  stiffness_matrix (eid,0,0,sm,x,y);  //  transformation of stiffness matrix  //  (in the case of nodal coordinate systems)  Mt->give_elemnodes (eid,nodes);  transf = Mt->locsystems (nodes);  if (transf>0){    matrix tmat (ndofe,ndofe);    transf_matrix (nodes,tmat);    glmatrixtransf (sm,tmat);  }}/**   function computes mass %matrix of the plane stress triangular   finite element with linear approximation functions      @param eid - number of element   @param mm - mass %matrix   @param x,y - node coordinates      JK, 17.6.2001*/void planeelemlt::mass_matrix (long eid,matrix &mm,vector &x,vector &y){  long i;  double jac,det,thick,rho;  ivector nodes(nne);  vector w(intordmm),gp1(intordmm),gp2(intordmm),t(nne),dens(nne);  matrix n(napfun,ndofe);    //  element nodes  Mt->give_elemnodes (eid,nodes);  //  thickness of the element  Mc->give_thickness (eid,nodes,t);  //  density of the material  Mc->give_density (eid,nodes,dens);    //  det is equal to double area of the element  det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]);    gauss_points_tr (gp1.a,gp2.a,w.a,intordmm);    fillm (0.0,mm);    for (i=0;i<intordmm;i++){    bf_matrix (n,gp1[i],gp2[i]);        thick = approx_nat (gp1[i],gp2[i],t);    rho = approx_nat (gp1[i],gp2[i],dens);        jac=w[i]*thick*rho*det;        nnj (mm.a,n.a,jac,n.m,n.n);  }  }/**   function computes mass %matrix of the plane stress triangular   finite element with linear approximation functions      @param eid - number of element   @param mm - mass %matrix      JK, 17.6.2001*/void planeelemlt::res_mass_matrix (long eid,matrix &mm){  long transf;  ivector nodes(nne);  vector x(nne),y(nne);  Mt->give_node_coord2d (x,y,eid);  mass_matrix (eid,mm,x,y);  //  transformation of mass matrix  //  (in the case of nodal coordinate systems)  Mt->give_elemnodes (eid,nodes);  transf = Mt->locsystems (nodes);  if (transf>0){    matrix tmat (ndofe,ndofe);    transf_matrix (nodes,tmat);    glmatrixtransf (mm,tmat);  }}/**   function computes load %matrix of the plane stress triangular   finite element with linear approximation functions   load vector is obtained after premultiplying load %matrix   by nodal load values      @param eid - number of element   @param lm - load %matrix   @param x,y - node coordinates   JK, 25.7.2001*/void planeelemlt::load_matrix (long eid,matrix &lm,vector &x,vector &y){  long i;  double jac,det,thick;  ivector nodes(nne);  vector w(intordmm),gp1(intordmm),gp2(intordmm),b(3),c(3),t(nne);  matrix n(napfun,ndofe);    Mt->give_elemnodes (eid,nodes);  Mc->give_thickness (eid,nodes,t);  gauss_points_tr (gp1.a,gp2.a,w.a,intordmm);  //  det is equal to double area of the element  det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]);    fillm (0.0,lm);    for (i=0;i<intordmm;i++){    bf_matrix (n,gp1[i],gp2[i]);        thick = approx_nat (gp1[i],gp2[i],t);        //  zkontrolovat deleni dvema    jac=w[i]*thick*det;        nnj (lm.a,n.a,jac,n.m,n.n);  }  }/**   function computes load %matrix of the plane stress triangular   finite element with linear approximation functions   load vector is obtained after premultiplying load %matrix   by nodal load values      @param eid - number of element   @param lm - load %matrix   JK, 25.7.2001*/void planeelemlt::res_load_matrix (long eid,matrix &lm){  long transf;  ivector nodes(nne);  vector x(nne),y(nne);    Mt->give_node_coord2d (x,y,eid);  load_matrix (eid,lm,x,y);  //  transformation of load matrix  //  (in the case of nodal coordinate systems)  Mt->give_elemnodes (eid,nodes);  transf = Mt->locsystems (nodes);  if (transf>0){    matrix tmat (ndofe,ndofe);    transf_matrix (nodes,tmat);    glmatrixtransf (lm,tmat);  }}/**   function computes strains at integration points      @param lcid - load case id   @param eid - element id      JK*/void planeelemlt::res_ip_strains (long lcid,long eid){  vector aux,x(nne),y(nne),r(ndofe);  ivector cn(ndofe),nodes(nne);  matrix tmat;  Mt->give_node_coord2d (x,y,eid);  Mt->give_elemnodes (eid,nodes);  Mt->give_code_numbers (eid,cn.a);  eldispl (lcid,eid,r.a,cn.a,ndofe);  //  transformation of displacement vector  //  (in the case of nodal coordinate systems)  long transf = Mt->locsystems (nodes);  if (transf>0){    allocv (ndofe,aux);    allocm (ndofe,ndofe,tmat);    transf_matrix (nodes,tmat);    //locglobtransf (aux,r,tmat);    lgvectortransf (aux,r,tmat);    copyv (aux,r);    destrv (aux);    destrm (tmat);  }  ip_strains (lcid,eid,0,0,x,y,r);}/**   function computes strains at integration points of element      @param lcid - load case id   @param eid - element id   @param ri - row index   @param ci - column index   @param x,y - node coordinates   @param r - nodal displacements      JK, 10.5.2002*/void planeelemlt::ip_strains (long lcid,long eid,long ri,long ci,vector &x,vector &y,vector &r){  long ipp;  vector eps(tncomp);  matrix gm(tncomp,ndofe);  geom_matrix (gm,x,y);  mxv (gm,r,eps);    ipp=Mt->elements[eid].ipp[ri][ci];  Mm->storestrain (lcid,ipp,cncomp[0],ncomp[0],eps);}/**   function computes strains at nodes of element      @param lcid - load case id   @param eid - element id   @param ri - row index   @param ci - column index      JK, 10.5.2002*/void planeelemlt::nod_strains (long lcid,long eid,long ri,long ci){  long ipp;  double *lsm,*lhs,*rhs;  vector nxi(nne),neta(nne),eps,aux,natcoord(2);  ivector nodes(nne);      //  natural coordinates of element nodes  //  (function is from the file GEFEL/ordering.cpp)  nodcoord_planelt (nxi,neta);  Mt->give_elemnodes (eid,nodes);    allocv (ncomp[0],eps);  lhs = new double [ncomp[0]*3];  rhs = new double [ncomp[0]*3];  lsm = new double [9];    nullv (lsm,9);  nullv (rhs,ncomp[0]*3);    ipp=Mt->elements[eid].ipp[ri][ci];  Mm->givestrain (lcid,ipp,cncomp[0],ncomp[0],eps);    natcoord[0]=1.0/3.0;  natcoord[1]=1.0/3.0;  matassem_lsm (lsm,natcoord);  rhsassem_lsm (rhs,natcoord,eps);    solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[0]);  Mt->strain_nodal_values (nodes,nxi,neta,nxi,lhs,2,cncomp[0],ncomp[0],lcid);    delete [] lsm;  delete [] lhs;  delete [] rhs;  destrv (eps);  destrv (nodes);}/**   function computes strains on element      @param val - array containing strains on element   @param lcid - load case id   @param eid - element id      15.7.2002*/void planeelemlt::elem_strains (double **stra,long lcid,long eid,long ri,long ci){  long i,ii,ipp;  double xi,eta,*lsm,*lhs,*rhs;  vector nxi(nne),neta(nne),gp1,gp2,w,eps,aux,natcoord(2);  lsm = new double [9];  //  natural coordinates of element nodes  //  (function is from the file GEFEL/ordering.cpp)  nodcoord_planelt (nxi,neta);    for (ii=0;ii<nb;ii++){    allocv (intordsm[ii][ii],gp1);    allocv (intordsm[ii][ii],gp2);    allocv (intordsm[ii][ii],w);    allocv (ncomp[ii],eps);    lhs = new double [ncomp[ii]*3];    rhs = new double [ncomp[ii]*3];    gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][ii]);        nullv (lsm,9);    nullv (rhs,ncomp[ii]*3);        ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];    for (i=0;i<intordsm[ii][ii];i++){      xi=gp1[i];  eta=gp2[i];            Mm->givestrain (lcid,ipp,cncomp[ii],ncomp[ii],eps);            natcoord[0]=xi;  natcoord[1]=eta;      matassem_lsm (lsm,natcoord);      rhsassem_lsm (rhs,natcoord,eps);            ipp++;    }        solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[ii]);    nodal_values (stra,nxi,neta,nxi,lhs,2,cncomp[ii],ncomp[ii]);        delete [] lhs;  delete [] rhs;    destrv (eps);  destrv (w);  destrv (gp1);  destrv (gp2);  }    delete [] lsm;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -