📄 plelemrotlt.cpp
字号:
#include "plelemrotlt.h"#include "global.h"#include "globmat.h"#include "genfile.h"#include "node.h"#include "element.h"#include "intpoints.h"#include <stdlib.h>planeelemrotlt::planeelemrotlt (void){ long i,j; nne=3; ndofe=9; tncomp=3; napfun=3; intordmm=3; ned=3; nned=2; nb=2; ncomp = new long [nb]; ncomp[0]=2; ncomp[1]=1; cncomp = new long [nb]; cncomp[0]=0; cncomp[1]=2; nip = new long* [nb]; intordsm = new long* [nb]; for (i=0;i<nb;i++){ nip[i] = new long [nb]; intordsm[i] = new long [nb]; } nip[0][0]=3; nip[0][1]=0; nip[1][0]=0; nip[1][1]=3; tnip=0; for (i=0;i<nb;i++){ for (j=0;j<nb;j++){ tnip+=nip[i][j]; } } intordsm[0][0]=3; intordsm[0][1]=0; intordsm[1][0]=0; intordsm[1][1]=3;}planeelemrotlt::~planeelemrotlt (void){ long i; for (i=0;i<nb;i++){ delete [] nip[i]; delete [] intordsm[i]; } delete [] nip; delete [] intordsm; delete [] cncomp; delete [] ncomp;}void planeelemrotlt::eleminit (long eid){ long ii,jj; Mt->elements[eid].nb=nb; Mt->elements[eid].intordsm = new long* [nb]; Mt->elements[eid].nip = new long* [nb]; for (ii=0;ii<nb;ii++){ Mt->elements[eid].intordsm[ii] = new long [nb]; Mt->elements[eid].nip[ii] = new long [nb]; for (jj=0;jj<nb;jj++){ Mt->elements[eid].intordsm[ii][jj]=intordsm[ii][jj]; Mt->elements[eid].nip[ii][jj]=nip[ii][jj]; } }}/** function approximates function defined by nodal values @param areacoord - vector containing area coordinates @param nodval - nodal values 6.1.2002*/double planeelemrotlt::approx (vector &areacoord,vector &nodval){ double f; scprd (areacoord,nodval,f); return f;}/** function approximates function defined by nodal values @param xi,eta - natural coordinates @param nodval - nodal values 1.4.2002*/double planeelemrotlt::approx_nat (double xi,double eta,vector &nodval){ double f; vector areacoord(3); areacoord[0]=xi; areacoord[1]=eta; areacoord[2]=1.0-areacoord[0]-areacoord[1]; scprd (areacoord,nodval,f); return f;}/** function returns matrix of base function 6.1.2002*/void planeelemrotlt::bf_matrix (matrix &n,vector &l,vector &b,vector &c){ vector bf(9); fillm (0.0,n); bf_rot_3_2d (bf.a,l.a,b.a,c.a); n[0][0]=bf[0]; n[0][2]=bf[3]; n[0][3]=bf[1]; n[0][5]=bf[4]; n[0][6]=bf[2]; n[0][8]=bf[5]; n[1][1]=bf[0]; n[1][2]=bf[6]; n[1][4]=bf[1]; n[1][5]=bf[7]; n[1][7]=bf[2]; n[1][8]=bf[8];}void planeelemrotlt::geom_matrix (matrix &gm,vector &x,vector &y,vector &areacoord){ double area,det; vector b(3),c(3),dx(9),dy(9); // det is equal to double area of the element det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]); area=det/2.0; plsb (b.a,y.a,det); plsc (c.a,x.a,det); dx_bf_rot_3_2d (dx.a,areacoord.a,b.a,c.a); dy_bf_rot_3_2d (dy.a,areacoord.a,b.a,c.a); fillm (0.0,gm); gm[0][0]=dx[0]; gm[0][2]=dx[3]; gm[0][3]=dx[1]; gm[0][5]=dx[4]; gm[0][6]=dx[2]; gm[0][8]=dx[5]; gm[1][1]=dy[0]; gm[1][2]=dy[6]; gm[1][4]=dy[1]; gm[1][5]=dy[7]; gm[1][7]=dy[2]; gm[1][8]=dy[8]; gm[2][0]=dy[0]; gm[2][1]=dx[0]; gm[2][2]=dy[3]+dx[6]; gm[2][3]=dy[1]; gm[2][4]=dx[1]; gm[2][5]=dy[4]+dx[7]; gm[2][6]=dy[2]; gm[2][7]=dx[2]; gm[2][8]=dy[5]+dx[8]; }void planeelemrotlt::geom_matrix_block (matrix &gm,long ri,vector &x,vector &y,vector &areacoord){ double area,det; vector b(3),c(3),dx(9),dy(9); // det is equal to double area of the element det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]); area=det/2.0; plsb (b.a,y.a,det); plsc (c.a,x.a,det); dx_bf_rot_3_2d (dx.a,areacoord.a,b.a,c.a); dy_bf_rot_3_2d (dy.a,areacoord.a,b.a,c.a); fillm (0.0,gm); if (ri==0){ gm[0][0]=dx[0]; gm[0][2]=dx[3]; gm[0][3]=dx[1]; gm[0][5]=dx[4]; gm[0][6]=dx[2]; gm[0][8]=dx[5]; gm[1][1]=dy[0]; gm[1][2]=dy[6]; gm[1][4]=dy[1]; gm[1][5]=dy[7]; gm[1][7]=dy[2]; gm[1][8]=dy[8]; } if (ri==1){ gm[0][0]=dy[0]; gm[0][1]=dx[0]; gm[0][2]=dy[3]+dx[6]; gm[0][3]=dy[1]; gm[0][4]=dx[1]; gm[0][5]=dy[4]+dx[7]; gm[0][6]=dy[2]; gm[0][7]=dx[2]; gm[0][8]=dy[5]+dx[8]; }}void planeelemrotlt::addgeommat (matrix &gm,vector &x,vector &y,vector &areacoord,double &jac){ long i,i1,i2,i3,ii,jj; double det,area; vector b(3),c(3),bf(ndofe),dx(ndofe),dy(ndofe); // det is equal to double area of the element det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]); jac = det; area=det/2.0; plsb (b.a,y.a,det); plsc (c.a,x.a,det); bf_rot_3_2d (bf.a,areacoord.a,b.a,c.a); dx_bf_rot_3_2d (dx.a,areacoord.a,b.a,c.a); dy_bf_rot_3_2d (dy.a,areacoord.a,b.a,c.a); fillm (0.0,gm); i1=0; i2=1; i3=2; ii=3; jj=6; for (i=0;i<nne;i++){ gm[0][i1]=0.0-dy[i]/2.0; gm[0][i2]=dx[i]/2.0; gm[0][i3]=dx[jj]/2.0-dy[ii]/2.0-bf[i]; i1+=3; i2+=3; i3+=3; ii++; jj++; }}void planeelemrotlt::dmatblock (long ri,long ci,matrix &d, matrix &dd){ fillm (0.0,dd); if (ri==0 && ci==0){ dd[0][0]=d[0][0]; dd[0][1]=d[0][1]; dd[1][0]=d[1][0]; dd[1][1]=d[1][1]; } if (ri==0 && ci==1){ dd[0][0]=d[0][2]; dd[1][0]=d[1][2]; } if (ri==1 && ci==0){ dd[0][0]=d[2][0]; dd[0][1]=d[2][1]; } if (ri==1 && ci==1){ dd[0][0]=d[2][2]; }}/** transformation matrix x_g = T x_l*/void planeelemrotlt::transf_matrix (ivector &nodes,matrix &tmat){ long i,n,m; fillm (0.0,tmat); n=nodes.n; m=tmat.m; for (i=0;i<m;i++){ tmat[i][i]=1.0; } for (i=0;i<n;i++){ if (Mt->nodes[nodes[i]].transf>0){ tmat[i*3][i*3] = Mt->nodes[nodes[i]].e1[0]; tmat[i*3][i*3+1] = Mt->nodes[nodes[i]].e2[0]; tmat[i*3][i*3+2] = 0.0; tmat[i*3+1][i*3] = Mt->nodes[nodes[i]].e1[1]; tmat[i*3+1][i*3+1] = Mt->nodes[nodes[i]].e2[1]; tmat[i*3+1][i*3+2] = 0.0; tmat[i*3+2][i*3] = 0.0; tmat[i*3+2][i*3+1] = 0.0; tmat[i*3+2][i*3+2] = 1.0; } }}/** function computes stiffness matrix of plane stress quadrilateral finite element with rotational degrees of freedom with bilinear approximation functions @param eid - number of element @param sm - stiffness matrix 8.12.2001*/void planeelemrotlt::stiffness_matrix (long eid,long ri,long ci,matrix &sm,vector &x,vector &y){ long i,ii,jj,ipp; double jac,det,thick; ivector nodes(nne); vector areacoord(3),t(nne),gp1,gp2,w; matrix gmr,gmc,dd,d(tncomp,tncomp); Mt->give_elemnodes (eid,nodes); Mc->give_thickness (eid,nodes,t); // det is equal to double area of the element det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]); fillm (0.0,sm); for (ii=0;ii<nb;ii++){ allocm (ncomp[ii],ndofe,gmr); for (jj=0;jj<nb;jj++){ if (intordsm[ii][jj]==0) continue; allocm (ncomp[jj],ndofe,gmc); allocm (ncomp[ii],ncomp[jj],dd); allocv (nip[ii][jj],gp1); allocv (nip[ii][jj],gp2); allocv (nip[ii][jj],w); gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][jj]); ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; for (i=0;i<intordsm[ii][jj];i++){ areacoord[0]=gp1[i]; areacoord[1]=gp2[i]; areacoord[2]=1.0-gp1[i]-gp2[i]; // geometric matrix geom_matrix_block (gmr,ii,x,y,areacoord); geom_matrix_block (gmc,jj,x,y,areacoord); //geom_matrix (gmr,x,y,areacoord); //geom_matrix (gmc,x,y,areacoord); // stiffness matrix of material Mm->matstiff (d,ipp); dmatblock (ii,jj,d,dd); thick = approx (areacoord,t); jac=thick*det*w[i]; // contribution to the stiffness matrix of the element //bdbj (sm.a,gm.a,d.a,jac,gm.m,gm.n); bdbjac (sm,gmr,dd,gmc,jac); ipp++; } destrv (w); destrv (gp1); destrv (gp2); destrm (gmc); destrm (dd); } destrm (gmr); } allocv (1,w); allocv (1,gp1); allocv (1,gp2); gauss_points_tr (gp1.a,gp2.a,w.a,1); areacoord[0]=gp1[0]; areacoord[1]=gp2[0]; areacoord[2]=1.0-gp1[0]-gp2[0]; allocm (1,ndofe,gmr); allocm (ndofe,ndofe,gmc); addgeommat (gmr,x,y,areacoord,jac); mtxm (gmr,gmr,gmc); thick = approx (areacoord,t); cmulm (thick*jac*w[0],gmc); addm (sm,gmc,sm); destrm (gmc); destrm (gmr); destrv (gp1); destrv (gp2); destrv (w); }void planeelemrotlt::res_stiffness_matrix (long eid,matrix &sm){ long transf; vector x(nne),y(nne); ivector nodes(nne); Mt->give_node_coord2d (x,y,eid); Mt->give_elemnodes (eid,nodes); stiffness_matrix (eid,0,0,sm,x,y); // transformation of stiffness matrix transf = Mt->locsystems (nodes); if (transf>0){ matrix tmat (ndofe,ndofe); transf_matrix (nodes,tmat); glmatrixtransf (sm,tmat); }}/** function computes mass matrix of the plane stress quadrilateral finite element with rotationale degrees of freedom wtih bilinear approximation functions @param eid - number of element @param mm - mass matrix 8.12.2001*/void planeelemrotlt::mass_matrix (long eid,matrix &mm,vector &x,vector &y){ long i; double jac,area,thick,rho; ivector nodes(nne); vector b(3),c(3),areacoord(3),w(intordmm),gp1(intordmm),gp2(intordmm),t(nne),dens(nne); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); Mc->give_thickness (eid,nodes,t); Mc->give_density (eid,nodes,dens); // det is equal to double area of the element area = ((x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]))/2.0; b_coeff (b.a,y.a); c_coeff (c.a,x.a); gauss_points_tr (gp1.a,gp2.a,w.a,intordmm); fillm (0.0,mm); for (i=0;i<intordmm;i++){ areacoord[0]=gp1[i]; areacoord[1]=gp2[i]; areacoord[2]=1.0-gp1[i]-gp2[i]; bf_matrix (n,areacoord,b,c); thick = approx (areacoord,t); rho = approx (areacoord,dens); jac=w[i]*thick*rho*area*2.0; nnj (mm.a,n.a,jac,n.m,n.n); } }void planeelemrotlt::res_mass_matrix (long eid,matrix &mm){ vector x(nne),y(nne); Mt->give_node_coord2d (x,y,eid); mass_matrix (eid,mm,x,y);}/** function computes load matrix of the plane stress rectangular finite element with bilinear approximation functions load vector is obtained after premultiplying load matrix by nodal load values @param eid - number of element @param lm - load matrix 25.7.2001*/void planeelemrotlt::load_matrix (long eid,matrix &lm){
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -