⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 axisymqq.cpp

📁 Finite element program for mechanical problem. It can solve various problem in solid problem
💻 CPP
📖 第 1 页 / 共 2 页
字号:
      @param lcid - load case id   @param eid - element id      JK*/void axisymqq::res_mainip_stresses (long lcid,long eid){  mainip_stresses (lcid,eid,0,0);}/**   function computes stresses in main integration points of element      @param lcid - load case id   @param eid - element id   @param ri - row index   @param ci - column index      10.5.2002*/void axisymqq::mainip_stresses (long lcid,long eid,long ri,long ci){  long i,j,ipp;  double xi,eta;  vector gp,w,eps(tncomp),sig(tncomp);  matrix d(tncomp,tncomp);    allocv (intordsm[0][0],gp);  allocv (intordsm[0][0],w);    gauss_points (gp.a,w.a,intordsm[0][0]);  ipp=Mt->elements[eid].ipp[ri][ci];    for (i=0;i<intordsm[0][0];i++){    xi=gp[i];    for (j=0;j<intordsm[0][0];j++){      eta=gp[j];            Mm->matstiff (d,ipp);            Mm->givestrain (lcid,ipp,eps);            mxv (d,eps,sig);            Mm->storestress (lcid,ipp,sig);            ipp++;    }  }    destrv (w);  destrv (gp);}/**   function computes stresses at nodes of element   @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices      10.5.2002*/void axisymqq::nod_stresses_ip (long lcid,long eid){  long i,j;  ivector ipnum(nne),nod(nne);  vector sig(tncomp);    //  numbers of integration points closest to nodes  nodipnum (eid,ipnum);    //  node numbers of the element  Mt->give_elemnodes (eid,nod);    for (i=0;i<nne;i++){    //  stresses at the closest integration point    Mm->givestress (lcid,ipnum[i],sig);        //  storage of stresses to the node    j=nod[i];    Mt->nodes[j].storestress (lcid,0,sig);  }  }/**   function computes strains in nodes of element      @param lcid - load case id   @param eid - element id      JK, 23.9.2004*/void axisymqq::nod_stresses_comp (long lcid,long eid){  long i,j,ipp;  vector x(nne),y(nne),nxi(nne),neta(nne),r(ndofe),eps(tncomp),sig(tncomp),aux;  ivector nodes(nne),cn(ndofe);  matrix gm(tncomp,ndofe),tmat,d(tncomp,tncomp);    //  natural coordinates of nodes of element  nodecoord (nxi,neta);  //  node numbers of element  Mt->give_elemnodes (eid,nodes);  //  coordinates of element nodes  Mt->give_node_coord2d (x,y,eid);  //  code numbers of element  Mt->give_code_numbers (eid,cn.a);  //  nodal displacements  eldispl (lcid,eid,r.a,cn.a,ndofe);    //  transformation of displacement vector  long transf = Mt->locsystems (nodes);  if (transf>0){    allocv (ndofe,aux);    allocm (ndofe,ndofe,tmat);    transf_matrix (nodes,tmat);    lgvectortransf (aux,r,tmat);    //locglobtransf (aux,r,tmat);    copyv (aux,r);    destrv (aux);    destrm (tmat);  }    /*  //  the first integration point on the element  ipp=Mt->elements[eid].ipp[ri][ci];  //  stiffness matrix of the material  Mm->matstiff (d,ipp);    for (i=0;i<nne;i++){    //  block of geometric matrix    geom_matrix (gm,x,y,nxi[i],neta[i],jac);    //  strain computation    mxv (gm,r,eps);    //  stress computation    mxv (d,eps,sig);        //  number of actual node    j=nodes[i];    //  storage of nodal strains    Mt->nodes[j].storestrain (lcid,0,tncomp,eps);    //  storage of nodal strains    Mt->nodes[j].storestress (lcid,0,tncomp,sig);  }  */    ipp=Mt->elements[eid].ipp[0][0]+4;  for (i=0;i<nne;i++){        //Mm->givestrain (lcid,ipp,eps);    Mm->givestress (lcid,ipp,sig);        //  number of actual node    j=nodes[i];    //  storage of nodal strains    //Mt->nodes[j].storestrain (lcid,0,tncomp,eps);    //  storage of nodal strains    Mt->nodes[j].storestress (lcid,0,tncomp,sig);  }  }/**   function computes stresses in all integration points      @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices      10.5.2002*/void axisymqq::res_allip_stresses (long lcid,long eid){  allip_stresses (lcid,eid,0,0);}/**   function computes stresses in all integration points      @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices      10.5.2002*/void axisymqq::allip_stresses (long lcid,long eid,long ri,long ci){  res_mainip_stresses (lcid,eid);}void axisymqq::stresses (long lcid,long eid,long ri,long ci){  vector coord,sig;  switch (Mm->stre.tape[eid]){  case nowhere:{    break;  }  case intpts:{    //allip_stresses (stre,lcid,eid,ri,ci);    //mainip_stresses (lcid,eid,ri,ci);    break;  }  case enodes:{    nod_stresses_ip (lcid,eid);    break;  }  case userdefined:{    //  number of auxiliary element points    /*    naep = Mm->stre.give_naep (eid);    ncp = Mm->stre.give_ncomp (eid);    sid = Mm->stre.give_sid (eid);    allocv (ncp,sig);    allocv (2,coord);    for (i=0;i<naep;i++){      Mm->stre.give_aepcoord (sid,i,coord);            if (Mp->stressaver==0)	appval (coord[0],coord[1],0,ncp,sig,stre);      if (Mp->stressaver==1)	appstress (lcid,eid,coord[0],coord[1],0,ncp,sig);            Mm->stre.storevalues(lcid,eid,i,sig);    }    destrv (sig);    destrv (coord);    */    break;  }  default:{    fprintf (stderr,"\n\n unknown stress point is required in function planeelemlq::stresses (%s, line %d).\n",__FILE__,__LINE__);  }  }}/**   function computes eqother components at nodes of element   @param lcid - load case id   @param eid - element id      JK, 10.5.2002*/void axisymqq::nod_eqother_ip (long lcid,long eid){  long i,j,ncompo;  ivector ipnum(nne),nod(nne);  vector eqother;    //  numbers of integration points closest to nodes  nodipnum (eid,ipnum);    //  node numbers of the element  Mt->give_elemnodes (eid,nod);    for (i=0;i<nne;i++){    //  strains at the closest integration point    //Mm->givestrain (lcid,ipnum[i],eps);        ncompo = Mm->givencompeqother (ipnum[i],0);    allocv (ncompo,eqother);    Mm->giveeqother (ipnum[i],0,ncompo,eqother.a);        //  storage of strains to the node    j=nod[i];    Mt->nodes[j].storeother (lcid,0,ncompo,eqother);        destrv (eqother);  }  }/**   function computes load matrix of the axisymmetric quadrilateral   finite element with bilinear approximation functions   load vector is obtained after premultiplying load matrix   by nodal load values      @param eid - number of element   @param lm - load matrix   8.12.2001*/void axisymqq::load_matrix (long eid,matrix &lm){  long i,j;  double jac,xi,eta,r;  ivector nodes(nne);  vector x(nne),y(nne),w(intordmm),gp(intordmm);  matrix n(napfun,ndofe);    Mt->give_elemnodes (eid,nodes);  Mt->give_node_coord2d (x,y,eid);  gauss_points (gp.a,w.a,intordmm);    fillm (0.0,lm);  for (i=0;i<intordmm;i++){    xi=gp[i];    for (j=0;j<intordmm;j++){      eta=gp[j];      jac_2d (jac,x,y,xi,eta);      bf_matrix (n,xi,eta);            r = approx (xi,eta,x);      jac*=r*w[i]*w[j];            nnj (lm.a,n.a,jac,n.m,n.n);    }  }  }void axisymqq::res_eigstrain_forces (long lcid,long eid,vector &nfor){  vector x(nne),y(nne);  Mt->give_node_coord2d (x,y,eid);  eigstrain_forces (lcid,eid,0,0,nfor,x,y);}/**   function computes nodal forces caused by temperature changes      @param eid - element id   @param ri,ci - row and column indices   @param nfor - array containing nodal forces   @param x,y - nodal coordinates      22.11.2002, JK*/void axisymqq::eigstrain_forces (long lcid,long eid,long ri,long ci,vector &nfor,vector &x,vector &y){  long i,j,k,ii,ipp;  double xi,eta,jac;  vector eigstr,sig,contr(ndofe),gp,w;  matrix d(tncomp,tncomp),dd,gm;    fillv (0.0,nfor);  for (ii=0;ii<nb;ii++){        allocv (intordsm[ii][ii],w);    allocv (intordsm[ii][ii],gp);        allocm (ncomp[ii],ndofe,gm);    allocm (ncomp[ii],ncomp[ii],dd);    allocv (ncomp[ii],eigstr);    allocv (ncomp[ii],sig);        gauss_points (gp.a,w.a,intordsm[ii][ii]);        ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];    for (i=0;i<intordsm[ii][ii];i++){      xi=gp[i];      for (j=0;j<intordsm[ii][ii];j++){	eta=gp[j];		Mm->giveeigstrain (ipp,cncomp[ii],ncomp[ii],eigstr);		Mm->matstiff (d,ipp);	mxv (d,eigstr,sig);	//geom_matrix_block (gm,ii,x,y,xi,eta,jac);	mtxv (gm,sig,contr);	cmulv (jac*w[i]*w[j],contr);		for (k=0;k<contr.n;k++){	  nfor[k]+=contr[k];	}		ipp++;      }    }    destrv (sig);  destrv (eigstr);  destrv (gp);  destrv (w);    //destrm (dd);    destrm (gm);  }}/**   function computes internal forces   @param lcid - number of load case   @param eid - element id   @param ri,ci - row and column indices   @param ifor - vector of internal forces      8.12.2001*/void axisymqq::internal_forces (long lcid,long eid,vector &ifor){  long i,j,k,ipp;  double xi,eta,jac,rad;  vector x(nne),y(nne),w,gp;  vector eps(tncomp),sig(tncomp),contr(ndofe);  matrix gm(tncomp,ndofe);    Mt->give_node_coord2d (x,y,eid);    fillv (0.0,ifor);    allocv (intordsm[0][0],gp);  allocv (intordsm[0][0],w);    gauss_points (gp.a,w.a,intordsm[0][0]);  ipp=Mt->elements[eid].ipp[0][0];    for (i=0;i<intordsm[0][0];i++){    xi=gp[i];    for (j=0;j<intordsm[0][0];j++){      eta=gp[j];            if (Mp->strcomp==1)	Mm->computenlstresses (ipp);            Mm->givestress (lcid,ipp,sig);            geom_matrix (gm,x,y,xi,eta,jac);            mtxv (gm,sig,contr);            rad = approx (xi,eta,x);            cmulv (rad*jac*w[i]*w[j],contr);            for (k=0;k<contr.n;k++){	ifor[k]+=contr[k];      }            ipp++;          }  }  destrv (w);  destrv (gp);}void axisymqq::res_internal_forces (long lcid,long eid,vector &ifor){  internal_forces (lcid,eid,ifor);}void axisymqq::nodeforces (long eid,long *le,double *nv,vector &nf){  long i;  double ww,jac,xi,eta;  vector x(nne),y(nne),gp(intordb),w(intordb),av(ndofe),v(ndofe);  matrix n(napfun,ndofe),am(ndofe,ndofe);    Mt->give_node_coord2d (x,y,eid);  gauss_points (gp.a,w.a,intordb);  if (le[0]==1){    fillm (0.0,am);    eta = 1.0;    for (i=0;i<intordb;i++){      xi = gp[i];      ww = w[i];            bf_matrix (n,xi,eta);            jac1d_2d (jac,x,y,xi,0);      jac *= ww;      nnj (am.a,n.a,jac,n.m,n.n);    }    fillv (0.0,av);    av[0]=nv[0];  av[1]=nv[1];  av[2]=nv[2];  av[3]=nv[3];    mxv (am,av,v);  addv (nf,v,nf);  }  if (le[1]==1){    fillm (0.0,am);    xi = -1.0;    for (i=0;i<intordb;i++){      eta = gp[i];      ww = w[i];      bf_matrix (n,xi,eta);            jac1d_2d (jac,x,y,eta,1);      jac *= ww;            nnj (am.a,n.a,jac,n.m,n.n);    }    fillv (0.0,av);    av[2]=nv[4];  av[3]=nv[5];  av[4]=nv[6];  av[5]=nv[7];    mxv (am,av,v);  addv (nf,v,nf);  }  if (le[2]==1){    fillm (0.0,am);    eta = -1.0;    for (i=0;i<intordb;i++){      xi = gp[i];      ww = w[i];            bf_matrix (n,xi,eta);            jac1d_2d (jac,x,y,xi,2);      jac *= ww;            nnj (am.a,n.a,jac,n.m,n.n);    }    fillv (0.0,av);    av[4]=nv[8];  av[5]=nv[9];  av[6]=nv[10];  av[7]=nv[11];    mxv (am,av,v);  addv (nf,v,nf);  }  if (le[3]==1){    fillm (0.0,am);    xi = 1.0;    for (i=0;i<intordb;i++){      eta = gp[i];      ww = w[i];            bf_matrix (n,xi,eta);            jac1d_2d (jac,x,y,eta,3);      jac *= ww;      nnj (am.a,n.a,jac,n.m,n.n);    }    fillv (0.0,av);    av[6]=nv[12];  av[7]=nv[13];  av[0]=nv[14];  av[1]=nv[15];    mxv (am,av,v);  addv (nf,v,nf);  }}void axisymqq::inicipval(long eid, long ri, long ci, matrix &nodval, inictype *ictn){  long i, j, k, l, ipp;  long ii, jj, nv = nodval.n;  long nstra;  double xi, eta, ipval;  vector w, gp, anv(nne);  nstra = 0;  for (j = 0; j < nv; j++) // for all initial values  {    for(i = 0; i < nne; i++)      anv[i] = nodval[i][j];    for (ii = 0; ii < nb; ii++)    {      for (jj = 0; jj < nb; jj++)      {        ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];        if (intordsm[ii][jj] == 0)          continue;        allocv (intordsm[ii][jj],gp);        allocv (intordsm[ii][jj],w);        gauss_points (gp.a,w.a,intordsm[ii][jj]);        for (k = 0; k < intordsm[ii][jj]; k++)        {          xi=gp[k];          for (l = 0; l < intordsm[ii][jj]; l++)          {            eta=gp[l];            //  value in integration point            ipval = approx (xi,eta,anv);            if ((ictn[i] & inistrain) && (j < Mm->ip[ipp].ncompstr))            {              Mm->ip[ipp].strain[j] += ipval;              ipp++;              continue;            }            if ((ictn[i] & inistress) && (j < nstra + Mm->ip[ipp].ncompstr))            {              Mm->ip[ipp].stress[j] += ipval;              ipp++;              continue;            }            if ((ictn[i] & iniother) && (j < nv))            {              Mm->ip[ipp].other[j] += ipval;              ipp++;              continue;            }            ipp++;          }        }        destrv (gp);  destrv (w);      }    }    if (ictn[i] & inistrain) nstra++;  }}/**   function interpolates the nodal values to the integration points on the element      @param eid - element id      21.6.2004, JK*/void axisymqq::intpointval (long eid,vector &nodval,vector &ipval){  long i,j,ii,jj,k;  double xi,eta;  vector w,gp;    k=0;  for (ii=0;ii<nb;ii++){    for (jj=0;jj<nb;jj++){      if (intordsm[ii][jj]==0)  continue;            allocv (intordsm[ii][jj],w);      allocv (intordsm[ii][jj],gp);      gauss_points (gp.a,w.a,intordsm[ii][jj]);      for (i=0;i<intordsm[ii][jj];i++){	xi=gp[i];	for (j=0;j<intordsm[ii][jj];j++){	  eta=gp[j];	  	  ipval[k]=approx (xi,eta,nodval);	  k++;	}      }            destrv (w);      destrv (gp);    }  }}/**   function interpolates the nodal values to the integration points on the element      @param eid - element id      21.6.2004, JK*/void axisymqq::intpointval2 (long eid,vector &nodval,vector &ipval){  long i,j,ii,jj,k;  double xi,eta;  vector w,gp;  vector modnodval(Asymlq->nne);    for (i=0;i<Asymlq->nne;i++){    modnodval[i]=nodval[i];  }    k=0;  for (ii=0;ii<nb;ii++){    for (jj=0;jj<nb;jj++){      if (intordsm[ii][jj]==0)  continue;            allocv (intordsm[ii][jj],w);      allocv (intordsm[ii][jj],gp);      gauss_points (gp.a,w.a,intordsm[ii][jj]);      for (i=0;i<intordsm[ii][jj];i++){	xi=gp[i];	for (j=0;j<intordsm[ii][jj];j++){	  eta=gp[j];	  	  ipval[k]=Asymlq->approx (xi,eta,modnodval);	  k++;	}      }            destrv (w);      destrv (gp);    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -