📄 axisymqq.cpp
字号:
@param lcid - load case id @param eid - element id JK*/void axisymqq::res_mainip_stresses (long lcid,long eid){ mainip_stresses (lcid,eid,0,0);}/** function computes stresses in main integration points of element @param lcid - load case id @param eid - element id @param ri - row index @param ci - column index 10.5.2002*/void axisymqq::mainip_stresses (long lcid,long eid,long ri,long ci){ long i,j,ipp; double xi,eta; vector gp,w,eps(tncomp),sig(tncomp); matrix d(tncomp,tncomp); allocv (intordsm[0][0],gp); allocv (intordsm[0][0],w); gauss_points (gp.a,w.a,intordsm[0][0]); ipp=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[0][0];i++){ xi=gp[i]; for (j=0;j<intordsm[0][0];j++){ eta=gp[j]; Mm->matstiff (d,ipp); Mm->givestrain (lcid,ipp,eps); mxv (d,eps,sig); Mm->storestress (lcid,ipp,sig); ipp++; } } destrv (w); destrv (gp);}/** function computes stresses at nodes of element @param lcid - load case id @param eid - element id @param ri,ci - row and column indices 10.5.2002*/void axisymqq::nod_stresses_ip (long lcid,long eid){ long i,j; ivector ipnum(nne),nod(nne); vector sig(tncomp); // numbers of integration points closest to nodes nodipnum (eid,ipnum); // node numbers of the element Mt->give_elemnodes (eid,nod); for (i=0;i<nne;i++){ // stresses at the closest integration point Mm->givestress (lcid,ipnum[i],sig); // storage of stresses to the node j=nod[i]; Mt->nodes[j].storestress (lcid,0,sig); } }/** function computes strains in nodes of element @param lcid - load case id @param eid - element id JK, 23.9.2004*/void axisymqq::nod_stresses_comp (long lcid,long eid){ long i,j,ipp; vector x(nne),y(nne),nxi(nne),neta(nne),r(ndofe),eps(tncomp),sig(tncomp),aux; ivector nodes(nne),cn(ndofe); matrix gm(tncomp,ndofe),tmat,d(tncomp,tncomp); // natural coordinates of nodes of element nodecoord (nxi,neta); // node numbers of element Mt->give_elemnodes (eid,nodes); // coordinates of element nodes Mt->give_node_coord2d (x,y,eid); // code numbers of element Mt->give_code_numbers (eid,cn.a); // nodal displacements eldispl (lcid,eid,r.a,cn.a,ndofe); // transformation of displacement vector long transf = Mt->locsystems (nodes); if (transf>0){ allocv (ndofe,aux); allocm (ndofe,ndofe,tmat); transf_matrix (nodes,tmat); lgvectortransf (aux,r,tmat); //locglobtransf (aux,r,tmat); copyv (aux,r); destrv (aux); destrm (tmat); } /* // the first integration point on the element ipp=Mt->elements[eid].ipp[ri][ci]; // stiffness matrix of the material Mm->matstiff (d,ipp); for (i=0;i<nne;i++){ // block of geometric matrix geom_matrix (gm,x,y,nxi[i],neta[i],jac); // strain computation mxv (gm,r,eps); // stress computation mxv (d,eps,sig); // number of actual node j=nodes[i]; // storage of nodal strains Mt->nodes[j].storestrain (lcid,0,tncomp,eps); // storage of nodal strains Mt->nodes[j].storestress (lcid,0,tncomp,sig); } */ ipp=Mt->elements[eid].ipp[0][0]+4; for (i=0;i<nne;i++){ //Mm->givestrain (lcid,ipp,eps); Mm->givestress (lcid,ipp,sig); // number of actual node j=nodes[i]; // storage of nodal strains //Mt->nodes[j].storestrain (lcid,0,tncomp,eps); // storage of nodal strains Mt->nodes[j].storestress (lcid,0,tncomp,sig); } }/** function computes stresses in all integration points @param lcid - load case id @param eid - element id @param ri,ci - row and column indices 10.5.2002*/void axisymqq::res_allip_stresses (long lcid,long eid){ allip_stresses (lcid,eid,0,0);}/** function computes stresses in all integration points @param lcid - load case id @param eid - element id @param ri,ci - row and column indices 10.5.2002*/void axisymqq::allip_stresses (long lcid,long eid,long ri,long ci){ res_mainip_stresses (lcid,eid);}void axisymqq::stresses (long lcid,long eid,long ri,long ci){ vector coord,sig; switch (Mm->stre.tape[eid]){ case nowhere:{ break; } case intpts:{ //allip_stresses (stre,lcid,eid,ri,ci); //mainip_stresses (lcid,eid,ri,ci); break; } case enodes:{ nod_stresses_ip (lcid,eid); break; } case userdefined:{ // number of auxiliary element points /* naep = Mm->stre.give_naep (eid); ncp = Mm->stre.give_ncomp (eid); sid = Mm->stre.give_sid (eid); allocv (ncp,sig); allocv (2,coord); for (i=0;i<naep;i++){ Mm->stre.give_aepcoord (sid,i,coord); if (Mp->stressaver==0) appval (coord[0],coord[1],0,ncp,sig,stre); if (Mp->stressaver==1) appstress (lcid,eid,coord[0],coord[1],0,ncp,sig); Mm->stre.storevalues(lcid,eid,i,sig); } destrv (sig); destrv (coord); */ break; } default:{ fprintf (stderr,"\n\n unknown stress point is required in function planeelemlq::stresses (%s, line %d).\n",__FILE__,__LINE__); } }}/** function computes eqother components at nodes of element @param lcid - load case id @param eid - element id JK, 10.5.2002*/void axisymqq::nod_eqother_ip (long lcid,long eid){ long i,j,ncompo; ivector ipnum(nne),nod(nne); vector eqother; // numbers of integration points closest to nodes nodipnum (eid,ipnum); // node numbers of the element Mt->give_elemnodes (eid,nod); for (i=0;i<nne;i++){ // strains at the closest integration point //Mm->givestrain (lcid,ipnum[i],eps); ncompo = Mm->givencompeqother (ipnum[i],0); allocv (ncompo,eqother); Mm->giveeqother (ipnum[i],0,ncompo,eqother.a); // storage of strains to the node j=nod[i]; Mt->nodes[j].storeother (lcid,0,ncompo,eqother); destrv (eqother); } }/** function computes load matrix of the axisymmetric quadrilateral finite element with bilinear approximation functions load vector is obtained after premultiplying load matrix by nodal load values @param eid - number of element @param lm - load matrix 8.12.2001*/void axisymqq::load_matrix (long eid,matrix &lm){ long i,j; double jac,xi,eta,r; ivector nodes(nne); vector x(nne),y(nne),w(intordmm),gp(intordmm); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); gauss_points (gp.a,w.a,intordmm); fillm (0.0,lm); for (i=0;i<intordmm;i++){ xi=gp[i]; for (j=0;j<intordmm;j++){ eta=gp[j]; jac_2d (jac,x,y,xi,eta); bf_matrix (n,xi,eta); r = approx (xi,eta,x); jac*=r*w[i]*w[j]; nnj (lm.a,n.a,jac,n.m,n.n); } } }void axisymqq::res_eigstrain_forces (long lcid,long eid,vector &nfor){ vector x(nne),y(nne); Mt->give_node_coord2d (x,y,eid); eigstrain_forces (lcid,eid,0,0,nfor,x,y);}/** function computes nodal forces caused by temperature changes @param eid - element id @param ri,ci - row and column indices @param nfor - array containing nodal forces @param x,y - nodal coordinates 22.11.2002, JK*/void axisymqq::eigstrain_forces (long lcid,long eid,long ri,long ci,vector &nfor,vector &x,vector &y){ long i,j,k,ii,ipp; double xi,eta,jac; vector eigstr,sig,contr(ndofe),gp,w; matrix d(tncomp,tncomp),dd,gm; fillv (0.0,nfor); for (ii=0;ii<nb;ii++){ allocv (intordsm[ii][ii],w); allocv (intordsm[ii][ii],gp); allocm (ncomp[ii],ndofe,gm); allocm (ncomp[ii],ncomp[ii],dd); allocv (ncomp[ii],eigstr); allocv (ncomp[ii],sig); gauss_points (gp.a,w.a,intordsm[ii][ii]); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; Mm->giveeigstrain (ipp,cncomp[ii],ncomp[ii],eigstr); Mm->matstiff (d,ipp); mxv (d,eigstr,sig); //geom_matrix_block (gm,ii,x,y,xi,eta,jac); mtxv (gm,sig,contr); cmulv (jac*w[i]*w[j],contr); for (k=0;k<contr.n;k++){ nfor[k]+=contr[k]; } ipp++; } } destrv (sig); destrv (eigstr); destrv (gp); destrv (w); //destrm (dd); destrm (gm); }}/** function computes internal forces @param lcid - number of load case @param eid - element id @param ri,ci - row and column indices @param ifor - vector of internal forces 8.12.2001*/void axisymqq::internal_forces (long lcid,long eid,vector &ifor){ long i,j,k,ipp; double xi,eta,jac,rad; vector x(nne),y(nne),w,gp; vector eps(tncomp),sig(tncomp),contr(ndofe); matrix gm(tncomp,ndofe); Mt->give_node_coord2d (x,y,eid); fillv (0.0,ifor); allocv (intordsm[0][0],gp); allocv (intordsm[0][0],w); gauss_points (gp.a,w.a,intordsm[0][0]); ipp=Mt->elements[eid].ipp[0][0]; for (i=0;i<intordsm[0][0];i++){ xi=gp[i]; for (j=0;j<intordsm[0][0];j++){ eta=gp[j]; if (Mp->strcomp==1) Mm->computenlstresses (ipp); Mm->givestress (lcid,ipp,sig); geom_matrix (gm,x,y,xi,eta,jac); mtxv (gm,sig,contr); rad = approx (xi,eta,x); cmulv (rad*jac*w[i]*w[j],contr); for (k=0;k<contr.n;k++){ ifor[k]+=contr[k]; } ipp++; } } destrv (w); destrv (gp);}void axisymqq::res_internal_forces (long lcid,long eid,vector &ifor){ internal_forces (lcid,eid,ifor);}void axisymqq::nodeforces (long eid,long *le,double *nv,vector &nf){ long i; double ww,jac,xi,eta; vector x(nne),y(nne),gp(intordb),w(intordb),av(ndofe),v(ndofe); matrix n(napfun,ndofe),am(ndofe,ndofe); Mt->give_node_coord2d (x,y,eid); gauss_points (gp.a,w.a,intordb); if (le[0]==1){ fillm (0.0,am); eta = 1.0; for (i=0;i<intordb;i++){ xi = gp[i]; ww = w[i]; bf_matrix (n,xi,eta); jac1d_2d (jac,x,y,xi,0); jac *= ww; nnj (am.a,n.a,jac,n.m,n.n); } fillv (0.0,av); av[0]=nv[0]; av[1]=nv[1]; av[2]=nv[2]; av[3]=nv[3]; mxv (am,av,v); addv (nf,v,nf); } if (le[1]==1){ fillm (0.0,am); xi = -1.0; for (i=0;i<intordb;i++){ eta = gp[i]; ww = w[i]; bf_matrix (n,xi,eta); jac1d_2d (jac,x,y,eta,1); jac *= ww; nnj (am.a,n.a,jac,n.m,n.n); } fillv (0.0,av); av[2]=nv[4]; av[3]=nv[5]; av[4]=nv[6]; av[5]=nv[7]; mxv (am,av,v); addv (nf,v,nf); } if (le[2]==1){ fillm (0.0,am); eta = -1.0; for (i=0;i<intordb;i++){ xi = gp[i]; ww = w[i]; bf_matrix (n,xi,eta); jac1d_2d (jac,x,y,xi,2); jac *= ww; nnj (am.a,n.a,jac,n.m,n.n); } fillv (0.0,av); av[4]=nv[8]; av[5]=nv[9]; av[6]=nv[10]; av[7]=nv[11]; mxv (am,av,v); addv (nf,v,nf); } if (le[3]==1){ fillm (0.0,am); xi = 1.0; for (i=0;i<intordb;i++){ eta = gp[i]; ww = w[i]; bf_matrix (n,xi,eta); jac1d_2d (jac,x,y,eta,3); jac *= ww; nnj (am.a,n.a,jac,n.m,n.n); } fillv (0.0,av); av[6]=nv[12]; av[7]=nv[13]; av[0]=nv[14]; av[1]=nv[15]; mxv (am,av,v); addv (nf,v,nf); }}void axisymqq::inicipval(long eid, long ri, long ci, matrix &nodval, inictype *ictn){ long i, j, k, l, ipp; long ii, jj, nv = nodval.n; long nstra; double xi, eta, ipval; vector w, gp, anv(nne); nstra = 0; for (j = 0; j < nv; j++) // for all initial values { for(i = 0; i < nne; i++) anv[i] = nodval[i][j]; for (ii = 0; ii < nb; ii++) { for (jj = 0; jj < nb; jj++) { ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; if (intordsm[ii][jj] == 0) continue; allocv (intordsm[ii][jj],gp); allocv (intordsm[ii][jj],w); gauss_points (gp.a,w.a,intordsm[ii][jj]); for (k = 0; k < intordsm[ii][jj]; k++) { xi=gp[k]; for (l = 0; l < intordsm[ii][jj]; l++) { eta=gp[l]; // value in integration point ipval = approx (xi,eta,anv); if ((ictn[i] & inistrain) && (j < Mm->ip[ipp].ncompstr)) { Mm->ip[ipp].strain[j] += ipval; ipp++; continue; } if ((ictn[i] & inistress) && (j < nstra + Mm->ip[ipp].ncompstr)) { Mm->ip[ipp].stress[j] += ipval; ipp++; continue; } if ((ictn[i] & iniother) && (j < nv)) { Mm->ip[ipp].other[j] += ipval; ipp++; continue; } ipp++; } } destrv (gp); destrv (w); } } if (ictn[i] & inistrain) nstra++; }}/** function interpolates the nodal values to the integration points on the element @param eid - element id 21.6.2004, JK*/void axisymqq::intpointval (long eid,vector &nodval,vector &ipval){ long i,j,ii,jj,k; double xi,eta; vector w,gp; k=0; for (ii=0;ii<nb;ii++){ for (jj=0;jj<nb;jj++){ if (intordsm[ii][jj]==0) continue; allocv (intordsm[ii][jj],w); allocv (intordsm[ii][jj],gp); gauss_points (gp.a,w.a,intordsm[ii][jj]); for (i=0;i<intordsm[ii][jj];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][jj];j++){ eta=gp[j]; ipval[k]=approx (xi,eta,nodval); k++; } } destrv (w); destrv (gp); } }}/** function interpolates the nodal values to the integration points on the element @param eid - element id 21.6.2004, JK*/void axisymqq::intpointval2 (long eid,vector &nodval,vector &ipval){ long i,j,ii,jj,k; double xi,eta; vector w,gp; vector modnodval(Asymlq->nne); for (i=0;i<Asymlq->nne;i++){ modnodval[i]=nodval[i]; } k=0; for (ii=0;ii<nb;ii++){ for (jj=0;jj<nb;jj++){ if (intordsm[ii][jj]==0) continue; allocv (intordsm[ii][jj],w); allocv (intordsm[ii][jj],gp); gauss_points (gp.a,w.a,intordsm[ii][jj]); for (i=0;i<intordsm[ii][jj];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][jj];j++){ eta=gp[j]; ipval[k]=Asymlq->approx (xi,eta,modnodval); k++; } } destrv (w); destrv (gp); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -