📄 axisymqq.cpp
字号:
#include "axisymqq.h"#include "axisymlq.h"#include "global.h"#include "globmat.h"#include "genfile.h"#include "element.h"#include "node.h"#include "loadcase.h"#include "intpoints.h"#include <math.h>#include <stdlib.h>axisymqq::axisymqq (void){ long i,j; nne=8; ndofe=16; tncomp=4; napfun=2; ned=4; nned=3; intordmm=3; intordb=2; ssst=axisymm; nb=1; ncomp = new long [nb]; ncomp[0]=4; cncomp = new long [nb]; cncomp[0]=0; nip = new long* [nb]; intordsm = new long* [nb]; for (i=0;i<nb;i++){ nip[i] = new long [nb]; intordsm[i] = new long [nb]; } nip[0][0]=9; intordsm[0][0]=3; tnip=0; for (i=0;i<nb;i++){ for (j=0;j<nb;j++){ tnip+=nip[i][j]; } }}axisymqq::~axisymqq (void){ long i; for (i=0;i<nb;i++){ delete [] intordsm[i]; } delete intordsm; delete [] cncomp; delete [] ncomp;}void axisymqq::eleminit (long eid){ long ii,jj; Mt->elements[eid].nb=nb; Mt->elements[eid].intordsm = new long* [nb]; Mt->elements[eid].nip = new long* [nb]; for (ii=0;ii<nb;ii++){ Mt->elements[eid].intordsm[ii] = new long [nb]; Mt->elements[eid].nip[ii] = new long [nb]; for (jj=0;jj<nb;jj++){ Mt->elements[eid].intordsm[ii][jj]=intordsm[ii][jj]; Mt->elements[eid].nip[ii][jj]=nip[ii][jj]; } }}/** function approximates function defined by nodal values @param xi,eta - coordinates on element @param nodval - nodal values */double axisymqq::approx (double xi,double eta,vector &nodval){ double f; vector bf(nne); bf_quad_4_2d (bf.a,xi,eta); scprd (bf,nodval,f); return f;}/** function returns matrix of approximation functions @param n - matrix of approximation functions @param xi,eta - natural coordinates 9.7.2001*/void axisymqq::bf_matrix (matrix &n,double xi,double eta){ long i,j,k; vector bf(nne); fillm (0.0,n); bf_quad_4_2d (bf.a,xi,eta); j=0; k=1; for (i=0;i<nne;i++){ n[0][j]=bf[i]; n[1][k]=bf[i]; j+=2; k+=2; }}/** function assembles geometric matrix epsilon_x = du/dx epsilon_y = dv/dy epsilon_fi = u/r epsilon_xy = du/dy + dv/dx @param gm - geometric matrix @param ri - block index @param x,y - arrays of node coordinates @param xi,eta - natural coordinates @param jac - jacobian 8.12.2001*/void axisymqq::geom_matrix (matrix &gm,vector &x,vector &y,double xi,double eta,double &jac){ long i,i1,i2; double r; vector bf(nne),dx(nne),dy(nne); dx_bf_quad_4_2d (dx.a,xi,eta); dy_bf_quad_4_2d (dy.a,xi,eta); bf_quad_4_2d (bf.a,xi,eta); derivatives_2d (dx,dy,jac,x,y,xi,eta); r = approx (xi,eta,x); if (fabs(r)<Mp->zero){ //fprintf (stderr,"\n\n radius is equal %e in function axisymqq::geom_matrix_block (%s, line %d)",r,__FILE__,__LINE__); r=0.00001; } fillm (0.0,gm); i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dx[i]; gm[1][i2]=dy[i]; gm[2][i1]=bf[i]/r; gm[3][i1]=dy[i]; gm[3][i2]=dx[i]; i1+=2; i2+=2; }}/** function assembles part of geometric matrix epsilon_x = du/dx epsilon_y = dv/dy epsilon_fi = u/r epsilon_xy = du/dy + dv/dx @param gm - geometric matrix @param ri - block index @param x,y - arrays of node coordinates @param xi,eta - natural coordinates @param jac - jacobian 8.12.2001*/void axisymqq::geom_matrix_block (matrix &gm,long ri,vector &x,vector &y,double xi,double eta,double &jac){ if (nb==1){ geom_matrix (gm,x,y,xi,eta,jac); } else{ long i,i1,i2; double r; vector bf(nne),dx(nne),dy(nne); dx_bf_quad_4_2d (dx.a,xi,eta); dy_bf_quad_4_2d (dy.a,xi,eta); bf_quad_4_2d (bf.a,xi,eta); derivatives_2d (dx,dy,jac,x,y,xi,eta); r = approx (xi,eta,x); if (fabs(r)<Mp->zero){ //fprintf (stderr,"\n\n radius is equal %e in function axisymqq::geom_matrix_block (%s, line %d)",r,__FILE__,__LINE__); r=0.00001; } fillm (0.0,gm); if (ri==0){ i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dx[i]; gm[1][i2]=dy[i]; i1+=2; i2+=2; } } if (ri==1){ i1=0; for (i=0;i<nne;i++){ gm[0][i1]=bf[i]/r; i1+=2; } } if (ri==2){ i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dy[i]; gm[0][i2]=dx[i]; i1+=2; i2+=2; } } }}/** nutno otestovat! pak je mozne smazat tuto hlasku transformation matrix x_g = T x_l*/void axisymqq::transf_matrix (ivector &nodes,matrix &tmat){ long i,n,m; fillm (0.0,tmat); n=nodes.n; m=tmat.m; for (i=0;i<m;i++){ tmat[i][i]=1.0; } for (i=0;i<n;i++){ if (Mt->nodes[nodes[i]].transf>0){ tmat[i*2][i*2] = Mt->nodes[nodes[i]].e1[0]; tmat[i*2][i*2+1] = Mt->nodes[nodes[i]].e2[0]; tmat[i*2+1][i*2] = Mt->nodes[nodes[i]].e1[1]; tmat[i*2+1][i*2+1] = Mt->nodes[nodes[i]].e2[1]; } }}/** function computes stiffness matrix of axisymmetric quadrilateral finite element with bilinear approximation functions @param eid - element id @param ri,ci - row and column indices @param sm - stiffness matrix 8.12.2001*/void axisymqq::stiffness_matrix (long eid,long ri,long ci,matrix &sm){ long i,j,ipp,transf; double xi,eta,jac,r; ivector nodes(nne); vector x(nne),y(nne),w,gp; matrix gm(tncomp,ndofe),d(tncomp,tncomp); Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); fillm (0.0,sm); allocv (intordsm[0][0],w); allocv (intordsm[0][0],gp); gauss_points (gp.a,w.a,intordsm[0][0]); ipp=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[0][0];i++){ xi=gp[i]; for (j=0;j<intordsm[0][0];j++){ eta=gp[j]; // geometric matrix geom_matrix (gm,x,y,xi,eta,jac); // matrix of stiffness of the material Mm->matstiff (d,ipp); r = approx (xi,eta,x); jac*=w[i]*w[j]*r; // contribution to the stiffness matrix of the element bdbjac (sm,gm,d,gm,jac); ipp++; } } destrv (gp); destrv (w); // transformation of stiffness matrix transf = Mt->locsystems (nodes); if (transf>0){ matrix tmat (ndofe,ndofe); transf_matrix (nodes,tmat); glmatrixtransf (sm,tmat); }}/** function computes resulting stiffness matrix of element @param eid - element id @param sm - stiffness matrix 10.5.2002*/void axisymqq::res_stiffness_matrix (long eid,matrix &sm){ stiffness_matrix (eid,0,0,sm);}/** function computes mass matrix of the rectangular axisymmetric finite element with bilinear approximation functions @param eid - number of element @param mm - mass matrix 24.6.2001*/void axisymqq::mass_matrix (long eid,matrix &mm){ long i,j; double jac,xi,eta,rho,r; ivector nodes(nne); vector x(nne),y(nne),w(intordmm),gp(intordmm),t(nne),dens(nne); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mc->give_density (eid,nodes,dens); Mt->give_node_coord2d (x,y,eid); gauss_points (gp.a,w.a,intordmm); fillm (0.0,mm); for (i=0;i<intordmm;i++){ xi=gp[i]; for (j=0;j<intordmm;j++){ eta=gp[j]; jac_2d (jac,x,y,xi,eta); bf_matrix (n,xi,eta); rho = approx (xi,eta,dens); r = approx (xi,eta,x); jac*=w[i]*w[j]*rho*r; nnj (mm.a,n.a,jac,n.m,n.n); } } }void axisymqq::res_mainip_strains (long lcid,long eid){ mainip_strains (lcid,eid,0,0);}/** function computes strains in main integration points of element @param lcid - load case id @param eid - element id @param ri - row index @param ci - column index 10.5.2002*/void axisymqq::mainip_strains (long lcid,long eid,long ri,long ci){ long i,j,ipp; double xi,eta,jac; vector x(nne),y(nne),r(ndofe),gp,w,eps(tncomp),aux; ivector nodes(nne),cn(ndofe); matrix gm(tncomp,ndofe),tmat; Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); Mt->give_code_numbers (eid,cn.a); eldispl (lcid,eid,r.a,cn.a,ndofe); // transformation of displacement vector long transf = Mt->locsystems (nodes); if (transf>0){ allocv (ndofe,aux); allocm (ndofe,ndofe,tmat); transf_matrix (nodes,tmat); //locglobtransf (aux,r,tmat); lgvectortransf (aux,r,tmat); copyv (aux,r); destrv (aux); destrm (tmat); } allocv (intordsm[0][0],gp); allocv (intordsm[0][0],w); gauss_points (gp.a,w.a,intordsm[0][0]); ipp=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[0][0];i++){ xi=gp[i]; for (j=0;j<intordsm[0][0];j++){ eta=gp[j]; geom_matrix (gm,x,y,xi,eta,jac); mxv (gm,r,eps); Mm->storestrain (lcid,ipp,eps); ipp++; } } destrv (w); destrv (gp); }/** function computes strains in nodes of element @param lcid - load case id @param eid - element id @param ri,ci - row and column indices 10.5.2002*/void axisymqq::nod_strains_ip (long lcid,long eid){ long i,j; ivector ipnum(nne),nod(nne); vector eps(tncomp); // numbers of integration points closest to nodes nodipnum (eid,ipnum); // node numbers of the element Mt->give_elemnodes (eid,nod); for (i=0;i<nne;i++){ // strains at the closest integration point Mm->givestrain (lcid,ipnum[i],eps); // storage of strains to the node j=nod[i]; Mt->nodes[j].storestrain (lcid,0,eps); } }/** function computes strains in nodes of element @param lcid - load case id @param eid - element id JK, 23.9.2004*/void axisymqq::nod_strains_comp (long lcid,long eid){ long i,j; double jac; vector x(nne),y(nne),nxi(nne),neta(nne),r(ndofe),eps(tncomp),aux; ivector nodes(nne),cn(ndofe); matrix gm(tncomp,ndofe),tmat; // natural coordinates of nodes of element nodecoord (nxi,neta); // node numbers of element Mt->give_elemnodes (eid,nodes); // coordinates of element nodes Mt->give_node_coord2d (x,y,eid); // code numbers of element Mt->give_code_numbers (eid,cn.a); // nodal displacements eldispl (lcid,eid,r.a,cn.a,ndofe); // transformation of displacement vector long transf = Mt->locsystems (nodes); if (transf>0){ allocv (ndofe,aux); allocm (ndofe,ndofe,tmat); transf_matrix (nodes,tmat); //locglobtransf (aux,r,tmat); lgvectortransf (aux,r,tmat); copyv (aux,r); destrv (aux); destrm (tmat); } for (i=0;i<nne;i++){ // block of geometric matrix geom_matrix (gm,x,y,nxi[i],neta[i],jac); // strain computation mxv (gm,r,eps); // storage of nodal strains j=nodes[i]; Mt->nodes[j].storestrain (lcid,0,eps); } }/** function computes strains in all integration points @param lcid - load case id @param eid - element id @param ri,ci - row and column indices 10.5.2002*/void axisymqq::res_allip_strains (long lcid,long eid){ allip_strains (lcid,eid,0,0);}/** function computes strains in all integration points @param lcid - load case id @param eid - element id @param ri,ci - row and column indices 10.5.2002*/void axisymqq::allip_strains (long lcid,long eid,long ri,long ci){ // blocks of strain components at integration points res_mainip_strains (lcid,eid);}void axisymqq::strains (long lcid,long eid,long ri,long ci){ vector coord,eps; switch (Mm->stra.tape[eid]){ case nowhere:{ break; } case intpts:{ //allip_strains (stra,lcid,eid,ri,ci); break; } case enodes:{ nod_strains_ip (lcid,eid); break; } case userdefined:{ /* // number of auxiliary element points naep = Mm->stra.give_naep (eid); ncp = Mm->stra.give_ncomp (eid); sid = Mm->stra.give_sid (eid); allocv (ncp,eps); allocv (2,coord); for (i=0;i<naep;i++){ Mm->stra.give_aepcoord (sid,i,coord); if (Mp->strainaver==0) appval (coord[0],coord[1],0,ncp,eps,stra); if (Mp->strainaver==1) appstrain (lcid,eid,coord[0],coord[1],0,ncp,eps); Mm->stra.storevalues(lcid,eid,i,eps); } destrv (eps); destrv (coord); */ break; } default:{ fprintf (stderr,"\n\n unknown strain point is required in function planeelemlq::strains (%s, line %d).\n",__FILE__,__LINE__); } }}/** function assembles natural coordinates of nodes of element @param xi - array containing natural coordinates xi @param eta - array containing natrual coordinates eta 10.5.2002*/void axisymqq::nodecoord (vector &xi,vector &eta){ xi[0] = 1.0; eta[0] = 1.0; xi[1] = -1.0; eta[1] = 1.0; xi[2] = -1.0; eta[2] = -1.0; xi[3] = 1.0; eta[3] = -1.0; xi[4] = 0.0; eta[4] = 1.0; xi[5] = -1.0; eta[5] = 0.0; xi[6] = 0.0; eta[6] = -1.0; xi[7] = 1.0; eta[7] = 0.0;}/** function returns numbers of integration point closest to element nodes @param eid - element id @param ri,ci - row and column indices @param ipnum - array of numbers JK, 25.9.2004*/void axisymqq::nodipnum (long eid,ivector &ipnum){ long i,j; j=intordsm[0][0]; i=Mt->elements[eid].ipp[0][0]; /* ipnum[0]=i+j*(j-1)+j-1; ipnum[1]=i+j-1; ipnum[2]=i; ipnum[3]=i+j*(j-1); */ ipnum[0]=i+8; ipnum[1]=i+2; ipnum[2]=i+0; ipnum[3]=i+6; ipnum[4]=i+5; ipnum[5]=i+1; ipnum[6]=i+3; ipnum[7]=i+7; }/** function computes strains in arbitrary point on element @param xi, eta - natural coordinates of the point @param eps - array containing strains @param val - array containing values on element 11.5.2002*/void axisymqq::appval (double xi,double eta,long fi,long nc,vector &eps,double **val){ long i,j,k; vector nodval; k=0; allocv (nne,nodval); for (i=fi;i<fi+nc;i++){ for (j=0;j<nne;j++){ nodval[j]=val[j][i]; } eps[k]=approx (xi,eta,nodval); k++; } destrv (nodval);}/** function computes stresses at integration points
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -