⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lintet.cpp

📁 Finite element program for mechanical problem. It can solve various problem in solid problem
💻 CPP
📖 第 1 页 / 共 3 页
字号:
   @param eta - array containing natrual coordinates eta   @param zeta - array containing natrual coordinates zeta      10.5.2002*/void lintet::nodecoord (vector &xi,vector &eta,vector &zeta){  xi[0] = 0.0;  eta[0] = 0.0;  zeta[0]=0.0;  xi[1] = 1.0;  eta[1] = 0.0;  zeta[1]=0.0;  xi[2] = 0.0;  eta[2] = 1.0;  zeta[2]=0.0;  xi[3] = 0.0;  eta[3] = 0.0;  zeta[3]=1.0;}/**   function computes strains in arbitrary point on element      @param xi, eta - natural coordinates of the point   @param eps - array containing strains   @param val - array containing values on element      11.5.2002*/void lintet::appval (double xi,double eta,double zeta,long fi,long nc,vector &eps,double **val){  long i,j,k;  vector nodval(nne);    k=0;  for (i=fi;i<fi+nc;i++){    for (j=0;j<nne;j++){      nodval[j]=val[j][i];    }    eps[k]=approx_nat (xi,eta,zeta,nodval);    k++;  }}/**   function computes stresses in main integration points of element      @param lcid - load case id   @param eid - element id   @param ri - row index   @param ci - column index      10.5.2002*/void lintet::mainip_stresses (long lcid,long eid,long ri,long ci){  long ipp;  double xi,eta,zeta;  vector eps(tncomp),epst,epstt,sig(tncomp);  matrix d(tncomp,tncomp);    xi=0.25;  eta=0.25;  zeta=0.25;    ipp=Mt->elements[eid].ipp[ri][ci];    Mm->matstiff (d,ipp);    if (Mp->strainaver==0)    Mm->givestrain (lcid,ipp,cncomp[0],ncomp[0],eps);  if (Mp->strainaver==1)    appstrain (lcid,eid,xi,eta,zeta,cncomp[0],ncomp[0],eps);    /*  if (Mt->elements[eid].presctemp==1){    allocv (tncomp,epstt);    tempstrains (lcid,eid,ipp,xi,eta,zeta,epstt);    allocv (ncomp[0],epst);    extract (epst,epstt,cncomp[0],ncomp[0]);    subv (eps,epst,eps);    destrv (epst);  destrv (epstt);  }  */  mxv (d,eps,sig);  Mm->storestress (lcid,ipp,sig);}/**   function computes stresses in nodes      @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices      10.5.2002*/void lintet::nod_stresses (long lcid,long eid,long ri,long ci){  long ipp;  double xi,eta,zeta,*lsm,*lhs,*rhs;  vector nxi(nne),neta(nne),nzeta(nne),eps(tncomp),epst,epstt,sig(tncomp),natcoord(3);  ivector nodes(nne);  matrix d(tncomp,tncomp);    lsm = new double [16];  xi=0.25;  eta=0.25;  zeta=0.25;  Mt->give_elemnodes (eid,nodes);      lhs = new double [ncomp[0]*4];  rhs = new double [ncomp[0]*4];    nullv (lsm,16);  nullv (rhs,ncomp[0]*4);    ipp=Mt->elements[eid].ipp[ri][ci];    Mm->matstiff (d,ipp);      if (Mp->strainaver==0)    Mm->givestrain (lcid,ipp,cncomp[0],ncomp[0],eps);  if (Mp->strainaver==1)    appstrain (lcid,eid,xi,eta,zeta,cncomp[0],ncomp[0],eps);    /*  if (Mt->elements[eid].presctemp==1){    allocv (tncomp,epstt);    tempstrains (lcid,eid,ipp,xi,eta,zeta,epstt);    allocv (ncomp[0],epst);    extract (epst,epstt,cncomp[0],ncomp[0]);    subv (eps,epst,eps);    destrv (epst);  destrv (epstt);  }  */  mxv (d,eps,sig);    natcoord[0]=xi;  natcoord[1]=eta;  natcoord[2]=zeta;  matassem_lsm (lsm,natcoord);  rhsassem_lsm (rhs,natcoord,sig);    nodecoord (nxi,neta,nzeta);  solve_lsm (lsm,lhs,rhs,Mp->zero,4,ncomp[0]);  Mt->stress_nodal_values (nodes,nxi,neta,nzeta,lhs,3,cncomp[0],ncomp[0],lcid);      delete [] lsm;  delete [] lhs;  delete [] rhs;}void lintet::elem_stresses (double **stra,double **stre,long lcid,long eid,long ri,long ci){  long ii,ipp;  double xi,eta,zeta,*lsm,*lhs,*rhs;  vector nxi(nne),neta(nne),nzeta(nne),eps(tncomp),epst,epstt,sig(tncomp),natcoord(3);  matrix d(tncomp,tncomp);  lsm = new double [16];  nodecoord (nxi,neta,nzeta);    for (ii=0;ii<nb;ii++){    allocv (ncomp[ii],sig);    lhs = new double [ncomp[ii]*4];    rhs = new double [ncomp[ii]*4];        nullv (lsm,16);    nullv (rhs,ncomp[ii]*4);        ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];        xi=0.25;    eta=0.25;    zeta=0.25;        Mm->matstiff (d,ipp);        if (Mp->strainaver==0)      appval (xi,eta,zeta,0,tncomp,eps,stra);    if (Mp->strainaver==1)      appstrain (lcid,eid,xi,eta,zeta,0,tncomp,eps);        /*    if (Mt->elements[eid].presctemp==1){      allocv (tncomp,epstt);      tempstrains (lcid,eid,ipp,xi,eta,zeta,epstt);      allocv (ncomp[0],epst);      extract (epst,epstt,cncomp[0],ncomp[0]);      subv (eps,epst,eps);      destrv (epst);  destrv (epstt);    }    */    mxv (d,eps,sig);            natcoord[0]=xi;  natcoord[1]=eta;  natcoord[2]=zeta;    matassem_lsm (lsm,natcoord);    rhsassem_lsm (rhs,natcoord,sig);        solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[ii]);    nodal_values (stre,nxi,neta,nzeta,lhs,2,cncomp[ii],ncomp[ii]);        ipp++;    delete [] lhs;  delete [] rhs;  }    delete [] lsm;}/**   function computes stresses in arbitrary point on element      @param lcid - load case id   @param eid - element id   @param volcoord - area coordinates of the point   @param fi,li - first and last indices   @param sig - array containing stresses      11.5.2002*/void lintet::appstress (long lcid,long eid,double xi,double eta,double zeta,long fi,long ncomp,vector &sig){  long i,j,k;  ivector nodes(nne);  vector nodval(nne),volcoord(4);    if (ncomp != sig.n){    fprintf (stderr,"\n\n wrong interval of indices in function stress (%s, line %d).\n",__FILE__,__LINE__);    abort ();  }    volcoord[0]=xi;  volcoord[1]=eta;  volcoord[2]=zeta;  volcoord[3]=1.0-volcoord[0]-volcoord[1]-volcoord[2];  Mt->give_elemnodes (eid,nodes);  k=0;  for (i=fi;i<fi+ncomp;i++){    for (j=0;j<nne;j++){      nodval[j]=Mt->nodes[nodes[j]].stress[lcid*tncomp+i];    }    sig[k]=approx (volcoord,nodval);    k++;  }}/**   function computes stresses in all integration points      @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices      10.5.2002*/void lintet::allip_stresses (double **stre,long lcid,long eid,long ri,long ci){  long ipp;  double xi,eta,zeta;  vector sig(tncomp);    ipp=Mt->elements[eid].ipp[ri][ci];    xi=0.25;  eta=0.25;  zeta=0.25;    if (Mp->stressaver==0)    appval (xi,eta,zeta,0,tncomp,sig,stre);  if (Mp->stressaver==1)    appstress (lcid,eid,xi,eta,zeta,0,tncomp,sig);  Mm->storestress (lcid,ipp,sig);}void lintet::stresses (long lcid,long eid,long ri,long ci){  long i,naep,ncp,sid;  double **stra,**stre;  vector coord,sig;    if (Mp->stressaver==0){    stra = new double* [nne];    stre = new double* [nne];    for (i=0;i<nne;i++){      stra[i] = new double [tncomp];      stre[i] = new double [tncomp];    }    elem_strains (stra,lcid,eid,ri,ci);    elem_stresses (stra,stre,lcid,eid,ri,ci);  }  switch (Mm->stre.tape[eid]){  case nowhere:{    break;  }  case intpts:{    allip_stresses (stre,lcid,eid,ri,ci);    break;  }  case enodes:{    break;  }  case userdefined:{    //  number of auxiliary element points    naep = Mm->stre.give_naep (eid);    ncp = Mm->stre.give_ncomp (eid);    sid = Mm->stre.give_sid (eid);    allocv (ncp,sig);    allocv (3,coord);    for (i=0;i<naep;i++){      Mm->stre.give_aepcoord (sid,i,coord);            if (Mp->stressaver==0)	appval (coord[0],coord[1],coord[2],0,ncp,sig,stre);      if (Mp->stressaver==1)	appstress (lcid,eid,coord[0],coord[1],coord[2],0,ncp,sig);            Mm->stre.storevalues(lcid,eid,i,sig);    }    destrv (sig);    destrv (coord);    break;  }  default:{    fprintf (stderr,"\n\n unknown stress point is required in function planeelemlq::stresses (%s, line %d).\n",__FILE__,__LINE__);  }  }  if (Mp->stressaver==0){    for (i=0;i<nne;i++){      delete [] stra[i];      delete [] stre[i];    }    delete [] stra;    delete [] stre;  }}void lintet::internal_forces (long lcid,long eid,vector &ifor){  long i,ipp;  double xi,eta,zeta,det,jac;  vector x(nne),y(nne),z(nne),eps(tncomp),sig(tncomp),contr(ndofe);  matrix gm(tncomp,ndofe);  Mt->give_node_coord3d (x,y,z,eid);    ipp=Mt->elements[eid].ipp[0][0];    xi=0.25;  eta=0.25;  zeta=0.25;  fillv (0.0,ifor);  det = det3d (x.a,y.a,z.a);    appstrain (lcid,eid,xi,eta,zeta,0,tncomp,eps);  Mm->storestrain (lcid,ipp,eps);  Mm->computenlstresses (ipp);  Mm->givestress (lcid,ipp,sig);  geom_matrix (gm,x,y,z);  mtxv (gm,sig,contr);    jac=fabs(det)/6.0;  cmulv (jac,contr);    for (i=0;i<contr.n;i++){    ifor[i]+=contr[i];  }  }void lintet::res_internal_forces (long lcid,long eid,vector &ifor){  internal_forces (lcid,eid,ifor);}void lintet::local_values (long lcid,long eid,long ri,long ci){  long ipp;  double xi,eta,zeta;  vector eps(tncomp);  ipp=Mt->elements[eid].ipp[ri][ci];    xi=0.25;  eta=0.25;  zeta=0.25;  appstrain (lcid,eid,xi,eta,zeta,0,tncomp,eps);  Mm->storestrain (lcid,ipp,eps);  Mm->computenlstresses (ipp);}void lintet::nonloc_internal_forces (long lcid,long eid,long ri,long ci,vector &ifor){  long i,ipp;  double det,jac;  vector x(nne),y(nne),z(nne),sig(tncomp),contr(ndofe);  matrix gm(tncomp,ndofe);  Mt->give_node_coord3d (x,y,z,eid);    ipp=Mt->elements[eid].ipp[ri][ci];    fillv (0.0,ifor);  det = det3d (x.a,y.a,z.a);    Mm->compnonloc_nlstresses (ipp);  Mm->givestress (lcid,ipp,sig);  geom_matrix (gm,x,y,z);  mtxv (gm,sig,contr);    jac=fabs(det)/6.0;  cmulv (jac,contr);    for (i=0;i<contr.n;i++){    ifor[i]+=contr[i];  }  }/**   function returns coordinates of integration points   @param eid - element id   @param ipp - integration point pointer   @param ri - row index   @param ci - column index   @param coord - vector of coordinates   19.1.2002*/void lintet::ipcoord (long eid,long ipp,long ri,long ci,vector &coord){  long i,ii;  vector x(nne),y(nne),z(nne),volcoord(4),w(intordsm[ri][ci]),gp1(intordsm[ri][ci]),gp2(intordsm[ri][ci]),gp3(intordsm[ri][ci]);  gauss_points_tet (gp1.a,gp2.a,gp3.a,w.a,intordsm[ri][ci]);  Mt->give_node_coord3d (x,y,z,eid);  ii=Mt->elements[eid].ipp[ri][ci];  for (i=0;i<intordsm[ri][ci];i++){    volcoord[0]=gp1[i];    volcoord[1]=gp2[i];    volcoord[2]=gp3[i];    volcoord[3]=1.0-volcoord[0]-volcoord[1]-volcoord[2];    if (ii==ipp){      coord[0]=approx (volcoord,x);      coord[1]=approx (volcoord,y);      coord[2]=approx (volcoord,y);    }    ii++;  }}void lintet::inicipval(long eid, long ri, long ci, matrix &nodval, inictype *ictn){  long i, j, k, ipp;  long ii, jj, nv = nodval.n;  long nstra;  double xi, eta, zeta, ipval;  vector w, gp1, gp2, gp3, anv(nne);  nstra = 0;  for (j = 0; j < nv; j++) // for all initial values  {    for(i = 0; i < nne; i++) // for all nodes on element      anv[i] = nodval[i][j];    for (ii = 0; ii < nb; ii++)    {      for (jj = 0; jj < nb; jj++)      {        ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];        if (intordsm[ii][jj] == 0)          continue;        allocv (intordsm[ii][jj],gp1);        allocv (intordsm[ii][jj],gp2);        allocv (intordsm[ii][jj],gp3);        allocv (intordsm[ii][jj],w);        gauss_points_tet (gp1.a,gp2.a,gp3.a,w.a,intordsm[ii][ii]);        for (k = 0; k < intordsm[ii][jj]; k++)        {          xi=gp1[k];          eta=gp2[k];          zeta=gp3[k];          //  value in integration point          ipval = approx_nat (xi,eta,zeta,anv);          if ((ictn[i] & inistrain) && (j < Mm->ip[ipp].ncompstr))          {            Mm->ip[ipp].strain[j] += ipval;            ipp++;            continue;          }          if ((ictn[i] & inistress) && (j < nstra + Mm->ip[ipp].ncompstr))          {            Mm->ip[ipp].stress[j] += ipval;            ipp++;            continue;          }          if ((ictn[i] & iniother) && (j < nv))          {            Mm->ip[ipp].other[j] += ipval;            ipp++;            continue;          }          ipp++;        }        destrv (gp1);  destrv(gp2);  destrv(gp3);  destrv (w);      }    }    if (ictn[i] & inistrain) nstra++;  }}/**   function computes volume appropriate to integration point      2.3.2004, JK*/void lintet::ipvolume (long eid,long ri,long ci){  long ipp;  double jac,det;  vector x(nne),y(nne),z(nne);    Mt->give_node_coord3d (x,y,z,eid);  ipp=Mt->elements[eid].ipp[ri][ci];    det = det3d (x.a,y.a,z.a);  jac=det/6.0;    Mm->storeipvol (ipp,jac);}void lintet::nod_eqother_ip (long lcid,long eid){  long i,j,ipp,ncompo;  ivector nod(nne);  vector eqother;    //  node numbers of the element  Mt->give_elemnodes (eid,nod);    ipp=Mt->elements[eid].ipp[0][0];    ncompo = Mm->givencompeqother (ipp,0);  allocv (ncompo,eqother);  Mm->giveeqother (ipp,0,ncompo,eqother.a);    for (i=0;i<nne;i++){        //  storage of strains to the node    j=nod[i];    Mt->nodes[j].storeother (lcid,0,ncompo,eqother);      }    destrv (eqother);}/**   function computes nodal forces caused by presure on surface      @param lcid - number of load case   @param eid - element id   @param is - identification of surfaces   @param nv - nodal values   @param nf - nodal forces      5.4.2005, JK   pracuje pouze v globalnim souradnem systemu*/void lintet::node_forces_surf_old (long lcid,long eid,long *is,double *nv,vector &nf){  long i;  double xi,eta,zeta,jac;  vector x(nne),y(nne),z(nne),v(ndofe),av(ndofe),gp1(intordb),gp2(intordb),w(intordb);  matrix am(ndofe,ndofe),n(napfun,ndofe);    //  coordinates of element nodes  Mt->give_node_coord3d (x,y,z,eid);    gauss_points_tr (gp1.a,gp2.a,w.a,intordb);    if (is[0]==1){    for (i=0;i<intordb;i++){      xi=0.0; eta=gp1[i];  zeta=gp2[i];            jac2d_3d (jac,x,y,z,eta,zeta,0);      bf_matrix (n,xi,eta,zeta);      jac = jac*w[i];      nnj (am.a,n.a,jac,n.m,n.n);    }        av[6] = nv[0*3+0];    av[7] = nv[0*3+1];    av[8] = nv[0*3+2];        av[3] = nv[1*3+0];    av[4] = nv[1*3+1];    av[5] = nv[1*3+2];        av[9]  = nv[2*3+0];    av[10] = nv[2*3+1];    av[11] = nv[2*3+2];        mxv (am,av,v);    addv (v,nf,nf);  }  if (is[1]==1){    for (i=0;i<intordb;i++){      xi=gp1[i]; eta=0.0;  zeta=gp2[i];            jac2d_3d (jac,x,y,z,xi,zeta,1);      bf_matrix (n,xi,eta,zeta);      jac = jac*w[i];      nnj (am.a,n.a,jac,n.m,n.n);    }        av[0] = nv[9+0*3+0];    av[1] = nv[9+0*3+1];    av[2] = nv[9+0*3+2];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -