📄 lintet.cpp
字号:
@param eta - array containing natrual coordinates eta @param zeta - array containing natrual coordinates zeta 10.5.2002*/void lintet::nodecoord (vector &xi,vector &eta,vector &zeta){ xi[0] = 0.0; eta[0] = 0.0; zeta[0]=0.0; xi[1] = 1.0; eta[1] = 0.0; zeta[1]=0.0; xi[2] = 0.0; eta[2] = 1.0; zeta[2]=0.0; xi[3] = 0.0; eta[3] = 0.0; zeta[3]=1.0;}/** function computes strains in arbitrary point on element @param xi, eta - natural coordinates of the point @param eps - array containing strains @param val - array containing values on element 11.5.2002*/void lintet::appval (double xi,double eta,double zeta,long fi,long nc,vector &eps,double **val){ long i,j,k; vector nodval(nne); k=0; for (i=fi;i<fi+nc;i++){ for (j=0;j<nne;j++){ nodval[j]=val[j][i]; } eps[k]=approx_nat (xi,eta,zeta,nodval); k++; }}/** function computes stresses in main integration points of element @param lcid - load case id @param eid - element id @param ri - row index @param ci - column index 10.5.2002*/void lintet::mainip_stresses (long lcid,long eid,long ri,long ci){ long ipp; double xi,eta,zeta; vector eps(tncomp),epst,epstt,sig(tncomp); matrix d(tncomp,tncomp); xi=0.25; eta=0.25; zeta=0.25; ipp=Mt->elements[eid].ipp[ri][ci]; Mm->matstiff (d,ipp); if (Mp->strainaver==0) Mm->givestrain (lcid,ipp,cncomp[0],ncomp[0],eps); if (Mp->strainaver==1) appstrain (lcid,eid,xi,eta,zeta,cncomp[0],ncomp[0],eps); /* if (Mt->elements[eid].presctemp==1){ allocv (tncomp,epstt); tempstrains (lcid,eid,ipp,xi,eta,zeta,epstt); allocv (ncomp[0],epst); extract (epst,epstt,cncomp[0],ncomp[0]); subv (eps,epst,eps); destrv (epst); destrv (epstt); } */ mxv (d,eps,sig); Mm->storestress (lcid,ipp,sig);}/** function computes stresses in nodes @param lcid - load case id @param eid - element id @param ri,ci - row and column indices 10.5.2002*/void lintet::nod_stresses (long lcid,long eid,long ri,long ci){ long ipp; double xi,eta,zeta,*lsm,*lhs,*rhs; vector nxi(nne),neta(nne),nzeta(nne),eps(tncomp),epst,epstt,sig(tncomp),natcoord(3); ivector nodes(nne); matrix d(tncomp,tncomp); lsm = new double [16]; xi=0.25; eta=0.25; zeta=0.25; Mt->give_elemnodes (eid,nodes); lhs = new double [ncomp[0]*4]; rhs = new double [ncomp[0]*4]; nullv (lsm,16); nullv (rhs,ncomp[0]*4); ipp=Mt->elements[eid].ipp[ri][ci]; Mm->matstiff (d,ipp); if (Mp->strainaver==0) Mm->givestrain (lcid,ipp,cncomp[0],ncomp[0],eps); if (Mp->strainaver==1) appstrain (lcid,eid,xi,eta,zeta,cncomp[0],ncomp[0],eps); /* if (Mt->elements[eid].presctemp==1){ allocv (tncomp,epstt); tempstrains (lcid,eid,ipp,xi,eta,zeta,epstt); allocv (ncomp[0],epst); extract (epst,epstt,cncomp[0],ncomp[0]); subv (eps,epst,eps); destrv (epst); destrv (epstt); } */ mxv (d,eps,sig); natcoord[0]=xi; natcoord[1]=eta; natcoord[2]=zeta; matassem_lsm (lsm,natcoord); rhsassem_lsm (rhs,natcoord,sig); nodecoord (nxi,neta,nzeta); solve_lsm (lsm,lhs,rhs,Mp->zero,4,ncomp[0]); Mt->stress_nodal_values (nodes,nxi,neta,nzeta,lhs,3,cncomp[0],ncomp[0],lcid); delete [] lsm; delete [] lhs; delete [] rhs;}void lintet::elem_stresses (double **stra,double **stre,long lcid,long eid,long ri,long ci){ long ii,ipp; double xi,eta,zeta,*lsm,*lhs,*rhs; vector nxi(nne),neta(nne),nzeta(nne),eps(tncomp),epst,epstt,sig(tncomp),natcoord(3); matrix d(tncomp,tncomp); lsm = new double [16]; nodecoord (nxi,neta,nzeta); for (ii=0;ii<nb;ii++){ allocv (ncomp[ii],sig); lhs = new double [ncomp[ii]*4]; rhs = new double [ncomp[ii]*4]; nullv (lsm,16); nullv (rhs,ncomp[ii]*4); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; xi=0.25; eta=0.25; zeta=0.25; Mm->matstiff (d,ipp); if (Mp->strainaver==0) appval (xi,eta,zeta,0,tncomp,eps,stra); if (Mp->strainaver==1) appstrain (lcid,eid,xi,eta,zeta,0,tncomp,eps); /* if (Mt->elements[eid].presctemp==1){ allocv (tncomp,epstt); tempstrains (lcid,eid,ipp,xi,eta,zeta,epstt); allocv (ncomp[0],epst); extract (epst,epstt,cncomp[0],ncomp[0]); subv (eps,epst,eps); destrv (epst); destrv (epstt); } */ mxv (d,eps,sig); natcoord[0]=xi; natcoord[1]=eta; natcoord[2]=zeta; matassem_lsm (lsm,natcoord); rhsassem_lsm (rhs,natcoord,sig); solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[ii]); nodal_values (stre,nxi,neta,nzeta,lhs,2,cncomp[ii],ncomp[ii]); ipp++; delete [] lhs; delete [] rhs; } delete [] lsm;}/** function computes stresses in arbitrary point on element @param lcid - load case id @param eid - element id @param volcoord - area coordinates of the point @param fi,li - first and last indices @param sig - array containing stresses 11.5.2002*/void lintet::appstress (long lcid,long eid,double xi,double eta,double zeta,long fi,long ncomp,vector &sig){ long i,j,k; ivector nodes(nne); vector nodval(nne),volcoord(4); if (ncomp != sig.n){ fprintf (stderr,"\n\n wrong interval of indices in function stress (%s, line %d).\n",__FILE__,__LINE__); abort (); } volcoord[0]=xi; volcoord[1]=eta; volcoord[2]=zeta; volcoord[3]=1.0-volcoord[0]-volcoord[1]-volcoord[2]; Mt->give_elemnodes (eid,nodes); k=0; for (i=fi;i<fi+ncomp;i++){ for (j=0;j<nne;j++){ nodval[j]=Mt->nodes[nodes[j]].stress[lcid*tncomp+i]; } sig[k]=approx (volcoord,nodval); k++; }}/** function computes stresses in all integration points @param lcid - load case id @param eid - element id @param ri,ci - row and column indices 10.5.2002*/void lintet::allip_stresses (double **stre,long lcid,long eid,long ri,long ci){ long ipp; double xi,eta,zeta; vector sig(tncomp); ipp=Mt->elements[eid].ipp[ri][ci]; xi=0.25; eta=0.25; zeta=0.25; if (Mp->stressaver==0) appval (xi,eta,zeta,0,tncomp,sig,stre); if (Mp->stressaver==1) appstress (lcid,eid,xi,eta,zeta,0,tncomp,sig); Mm->storestress (lcid,ipp,sig);}void lintet::stresses (long lcid,long eid,long ri,long ci){ long i,naep,ncp,sid; double **stra,**stre; vector coord,sig; if (Mp->stressaver==0){ stra = new double* [nne]; stre = new double* [nne]; for (i=0;i<nne;i++){ stra[i] = new double [tncomp]; stre[i] = new double [tncomp]; } elem_strains (stra,lcid,eid,ri,ci); elem_stresses (stra,stre,lcid,eid,ri,ci); } switch (Mm->stre.tape[eid]){ case nowhere:{ break; } case intpts:{ allip_stresses (stre,lcid,eid,ri,ci); break; } case enodes:{ break; } case userdefined:{ // number of auxiliary element points naep = Mm->stre.give_naep (eid); ncp = Mm->stre.give_ncomp (eid); sid = Mm->stre.give_sid (eid); allocv (ncp,sig); allocv (3,coord); for (i=0;i<naep;i++){ Mm->stre.give_aepcoord (sid,i,coord); if (Mp->stressaver==0) appval (coord[0],coord[1],coord[2],0,ncp,sig,stre); if (Mp->stressaver==1) appstress (lcid,eid,coord[0],coord[1],coord[2],0,ncp,sig); Mm->stre.storevalues(lcid,eid,i,sig); } destrv (sig); destrv (coord); break; } default:{ fprintf (stderr,"\n\n unknown stress point is required in function planeelemlq::stresses (%s, line %d).\n",__FILE__,__LINE__); } } if (Mp->stressaver==0){ for (i=0;i<nne;i++){ delete [] stra[i]; delete [] stre[i]; } delete [] stra; delete [] stre; }}void lintet::internal_forces (long lcid,long eid,vector &ifor){ long i,ipp; double xi,eta,zeta,det,jac; vector x(nne),y(nne),z(nne),eps(tncomp),sig(tncomp),contr(ndofe); matrix gm(tncomp,ndofe); Mt->give_node_coord3d (x,y,z,eid); ipp=Mt->elements[eid].ipp[0][0]; xi=0.25; eta=0.25; zeta=0.25; fillv (0.0,ifor); det = det3d (x.a,y.a,z.a); appstrain (lcid,eid,xi,eta,zeta,0,tncomp,eps); Mm->storestrain (lcid,ipp,eps); Mm->computenlstresses (ipp); Mm->givestress (lcid,ipp,sig); geom_matrix (gm,x,y,z); mtxv (gm,sig,contr); jac=fabs(det)/6.0; cmulv (jac,contr); for (i=0;i<contr.n;i++){ ifor[i]+=contr[i]; } }void lintet::res_internal_forces (long lcid,long eid,vector &ifor){ internal_forces (lcid,eid,ifor);}void lintet::local_values (long lcid,long eid,long ri,long ci){ long ipp; double xi,eta,zeta; vector eps(tncomp); ipp=Mt->elements[eid].ipp[ri][ci]; xi=0.25; eta=0.25; zeta=0.25; appstrain (lcid,eid,xi,eta,zeta,0,tncomp,eps); Mm->storestrain (lcid,ipp,eps); Mm->computenlstresses (ipp);}void lintet::nonloc_internal_forces (long lcid,long eid,long ri,long ci,vector &ifor){ long i,ipp; double det,jac; vector x(nne),y(nne),z(nne),sig(tncomp),contr(ndofe); matrix gm(tncomp,ndofe); Mt->give_node_coord3d (x,y,z,eid); ipp=Mt->elements[eid].ipp[ri][ci]; fillv (0.0,ifor); det = det3d (x.a,y.a,z.a); Mm->compnonloc_nlstresses (ipp); Mm->givestress (lcid,ipp,sig); geom_matrix (gm,x,y,z); mtxv (gm,sig,contr); jac=fabs(det)/6.0; cmulv (jac,contr); for (i=0;i<contr.n;i++){ ifor[i]+=contr[i]; } }/** function returns coordinates of integration points @param eid - element id @param ipp - integration point pointer @param ri - row index @param ci - column index @param coord - vector of coordinates 19.1.2002*/void lintet::ipcoord (long eid,long ipp,long ri,long ci,vector &coord){ long i,ii; vector x(nne),y(nne),z(nne),volcoord(4),w(intordsm[ri][ci]),gp1(intordsm[ri][ci]),gp2(intordsm[ri][ci]),gp3(intordsm[ri][ci]); gauss_points_tet (gp1.a,gp2.a,gp3.a,w.a,intordsm[ri][ci]); Mt->give_node_coord3d (x,y,z,eid); ii=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[ri][ci];i++){ volcoord[0]=gp1[i]; volcoord[1]=gp2[i]; volcoord[2]=gp3[i]; volcoord[3]=1.0-volcoord[0]-volcoord[1]-volcoord[2]; if (ii==ipp){ coord[0]=approx (volcoord,x); coord[1]=approx (volcoord,y); coord[2]=approx (volcoord,y); } ii++; }}void lintet::inicipval(long eid, long ri, long ci, matrix &nodval, inictype *ictn){ long i, j, k, ipp; long ii, jj, nv = nodval.n; long nstra; double xi, eta, zeta, ipval; vector w, gp1, gp2, gp3, anv(nne); nstra = 0; for (j = 0; j < nv; j++) // for all initial values { for(i = 0; i < nne; i++) // for all nodes on element anv[i] = nodval[i][j]; for (ii = 0; ii < nb; ii++) { for (jj = 0; jj < nb; jj++) { ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; if (intordsm[ii][jj] == 0) continue; allocv (intordsm[ii][jj],gp1); allocv (intordsm[ii][jj],gp2); allocv (intordsm[ii][jj],gp3); allocv (intordsm[ii][jj],w); gauss_points_tet (gp1.a,gp2.a,gp3.a,w.a,intordsm[ii][ii]); for (k = 0; k < intordsm[ii][jj]; k++) { xi=gp1[k]; eta=gp2[k]; zeta=gp3[k]; // value in integration point ipval = approx_nat (xi,eta,zeta,anv); if ((ictn[i] & inistrain) && (j < Mm->ip[ipp].ncompstr)) { Mm->ip[ipp].strain[j] += ipval; ipp++; continue; } if ((ictn[i] & inistress) && (j < nstra + Mm->ip[ipp].ncompstr)) { Mm->ip[ipp].stress[j] += ipval; ipp++; continue; } if ((ictn[i] & iniother) && (j < nv)) { Mm->ip[ipp].other[j] += ipval; ipp++; continue; } ipp++; } destrv (gp1); destrv(gp2); destrv(gp3); destrv (w); } } if (ictn[i] & inistrain) nstra++; }}/** function computes volume appropriate to integration point 2.3.2004, JK*/void lintet::ipvolume (long eid,long ri,long ci){ long ipp; double jac,det; vector x(nne),y(nne),z(nne); Mt->give_node_coord3d (x,y,z,eid); ipp=Mt->elements[eid].ipp[ri][ci]; det = det3d (x.a,y.a,z.a); jac=det/6.0; Mm->storeipvol (ipp,jac);}void lintet::nod_eqother_ip (long lcid,long eid){ long i,j,ipp,ncompo; ivector nod(nne); vector eqother; // node numbers of the element Mt->give_elemnodes (eid,nod); ipp=Mt->elements[eid].ipp[0][0]; ncompo = Mm->givencompeqother (ipp,0); allocv (ncompo,eqother); Mm->giveeqother (ipp,0,ncompo,eqother.a); for (i=0;i<nne;i++){ // storage of strains to the node j=nod[i]; Mt->nodes[j].storeother (lcid,0,ncompo,eqother); } destrv (eqother);}/** function computes nodal forces caused by presure on surface @param lcid - number of load case @param eid - element id @param is - identification of surfaces @param nv - nodal values @param nf - nodal forces 5.4.2005, JK pracuje pouze v globalnim souradnem systemu*/void lintet::node_forces_surf_old (long lcid,long eid,long *is,double *nv,vector &nf){ long i; double xi,eta,zeta,jac; vector x(nne),y(nne),z(nne),v(ndofe),av(ndofe),gp1(intordb),gp2(intordb),w(intordb); matrix am(ndofe,ndofe),n(napfun,ndofe); // coordinates of element nodes Mt->give_node_coord3d (x,y,z,eid); gauss_points_tr (gp1.a,gp2.a,w.a,intordb); if (is[0]==1){ for (i=0;i<intordb;i++){ xi=0.0; eta=gp1[i]; zeta=gp2[i]; jac2d_3d (jac,x,y,z,eta,zeta,0); bf_matrix (n,xi,eta,zeta); jac = jac*w[i]; nnj (am.a,n.a,jac,n.m,n.n); } av[6] = nv[0*3+0]; av[7] = nv[0*3+1]; av[8] = nv[0*3+2]; av[3] = nv[1*3+0]; av[4] = nv[1*3+1]; av[5] = nv[1*3+2]; av[9] = nv[2*3+0]; av[10] = nv[2*3+1]; av[11] = nv[2*3+2]; mxv (am,av,v); addv (v,nf,nf); } if (is[1]==1){ for (i=0;i<intordb;i++){ xi=gp1[i]; eta=0.0; zeta=gp2[i]; jac2d_3d (jac,x,y,z,xi,zeta,1); bf_matrix (n,xi,eta,zeta); jac = jac*w[i]; nnj (am.a,n.a,jac,n.m,n.n); } av[0] = nv[9+0*3+0]; av[1] = nv[9+0*3+1]; av[2] = nv[9+0*3+2];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -