📄 plelemsubqt.cpp
字号:
#include "plelemsubqt.h"#include "global.h"#include "globmat.h"#include "genfile.h"#include "adaptivity.h"#include "node.h"#include "element.h"#include "intpoints.h"#include "plelemlt.h"#include "plelemlq.h"#include "plelemqq.h"#include <stdlib.h>#include <math.h>planeelemsubqt::planeelemsubqt (void){ long i,j; nne=6; ndofe=12; tncomp=3; napfun=2; intordmm=6; ned=3; nned=3; intordb = 3; nb=2; ncomp = new long [nb]; ncomp[0]=2; ncomp[1]=1; cncomp = new long [nb]; cncomp[0]=0; cncomp[1]=2; nip = new long* [nb]; intordsm = new long* [nb]; for (i=0;i<nb;i++){ nip[i] = new long [nb]; intordsm[i] = new long [nb]; } nip[0][0]=3; nip[0][1]=0; nip[1][0]=0; nip[1][1]=3; intordsm[0][0]=3; intordsm[0][1]=0; intordsm[1][0]=0; intordsm[1][1]=3; tnip=0; for (i=0;i<nb;i++){ for (j=0;j<nb;j++){ tnip+=nip[i][j]; } }}planeelemsubqt::~planeelemsubqt (void){ long i; for (i=0;i<nb;i++){ delete [] nip[i]; } delete [] nip; }void planeelemsubqt::eleminit (long eid){ long ii,jj; Mt->elements[eid].nb=nb; Mt->elements[eid].intordsm = new long* [nb]; Mt->elements[eid].nip = new long* [nb]; for (ii=0;ii<nb;ii++){ Mt->elements[eid].intordsm[ii] = new long [nb]; Mt->elements[eid].nip[ii] = new long [nb]; for (jj=0;jj<nb;jj++){ Mt->elements[eid].intordsm[ii][jj]=intordsm[ii][jj]; Mt->elements[eid].nip[ii][jj]=nip[ii][jj]; } }}/** function approximates function defined by nodal values @param xi,eta - natural coordinates @param nodval - nodal values*/double planeelemsubqt::approx (double xi,double eta,vector &nodval){ double f; vector bf(nne); bf_quad_3_2d (bf.a,xi,eta); scprd (bf,nodval,f); return f;}/** function returns matrix of base function 17.8.2001*/void planeelemsubqt::bf_matrix (matrix &n,double xi,double eta){ long i,i1,i2; vector bf(nne); bf_quad_3_2d (bf.a,xi,eta); fillm (0.0,n); i1=0; i2=1; for (i=0;i<nne;i++){ n[0][i1]=bf[i]; i1+=2; n[1][i2]=bf[i]; i2+=2; }}/** function assembles geometric matrix @param gm - geometric matrix @param x,y - node coordinates @param xi,eta - natural coordinates */void planeelemsubqt::geom_matrix (matrix &gm,vector &x,vector &y,double xi,double eta){ long i,i1,i2; double jac; vector dx(nne),dy(nne); dx_bf_quad_3_2d (dx.a,xi,eta); dy_bf_quad_3_2d (dy.a,xi,eta); derivatives_2d (dx,dy,jac,x,y,xi,eta); fillm (0.0,gm); i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dx[i]; gm[1][i2]=dy[i]; gm[2][i1]=dy[i]; i1+=2; gm[2][i2]=dx[i]; i2+=2; }}/** function assembles blocks of geometric matrix @param gm - geometric matrix @param x,y - node coordinates @param ri - row index @param xi,eta - natural coordinates */void planeelemsubqt::geom_matrix_block (matrix &gm,double ri,vector &x,vector &y,double xi,double eta){ long i,i1,i2; double jac; vector dx(nne),dy(nne); dx_bf_quad_3_2d (dx.a,xi,eta); dy_bf_quad_3_2d (dy.a,xi,eta); derivatives_2d (dx,dy,jac,x,y,xi,eta); fillm (0.0,gm); if (ri==0){ i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dx[i]; i1+=2; gm[1][i2]=dy[i]; i2+=2; } } if (ri==1){ i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dy[i]; i1+=2; gm[0][i2]=dx[i]; i2+=2; } }}void planeelemsubqt::dmatblock (long ri,long ci,matrix &d, matrix &dd){ fillm (0.0,dd); if (ri==0 && ci==0){ dd[0][0]=d[0][0]; dd[0][1]=d[0][1]; dd[1][0]=d[1][0]; dd[1][1]=d[1][1]; } if (ri==0 && ci==1){ dd[0][0]=d[0][2]; dd[1][0]=d[1][2]; } if (ri==1 && ci==0){ dd[0][0]=d[2][0]; dd[0][1]=d[2][1]; } if (ri==1 && ci==1){ dd[0][0]=d[2][2]; }}/** transformation matrix x_g = T x_l 17.8.2001*/void planeelemsubqt::transf_matrix (ivector &nodes,matrix &tmat){ long i,n,m; fillm (0.0,tmat); n=nodes.n; m=tmat.m; for (i=0;i<m;i++){ tmat[i][i]=1.0; } for (i=0;i<n;i++){ if (Mt->nodes[nodes[i]].transf>0){ tmat[i*2][i*2] = Mt->nodes[nodes[i]].e1[0]; tmat[i*2][i*2+1] = Mt->nodes[nodes[i]].e2[0]; tmat[i*2+1][i*2] = Mt->nodes[nodes[i]].e1[1]; tmat[i*2+1][i*2+1] = Mt->nodes[nodes[i]].e2[1]; } }}/** function computes stiffness matrix of plane stress triangular finite element with quadratic approximation functions @param eid - number of element @param sm - stiffness matrix 25.8.2001*/void planeelemsubqt::stiffness_matrix (long eid,long ri,long ci,matrix &sm,vector &x,vector &y){ long i,ii,jj,ipp; double jac,det,thick; ivector nodes(nne); vector t(nne),gp1,gp2,w; matrix gmr,gmc,dd,d(tncomp,tncomp); Mt->give_elemnodes (eid,nodes); Mc->give_thickness (eid,nodes,t); // det is equal to double area of the element det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]); fillm (0.0,sm); for (ii=0;ii<nb;ii++){ allocm (ncomp[ii],ndofe,gmr); for (jj=0;jj<nb;jj++){ if (intordsm[ii][jj]==0) continue; allocm (ncomp[jj],ndofe,gmc); allocm (ncomp[ii],ncomp[jj],dd); allocv (intordsm[ii][jj],gp1); allocv (intordsm[ii][jj],gp2); allocv (intordsm[ii][jj],w); gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][jj]); ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; for (i=0;i<intordsm[ii][jj];i++){ // geometric matrix geom_matrix_block (gmr,ii,x,y,gp1[i],gp2[i]); geom_matrix_block (gmc,jj,x,y,gp1[i],gp2[i]); // stiffness matrix of material Mm->matstiff (d,ipp); ipp++; dmatblock (ii,jj,d,dd); thick = approx (gp1[i],gp2[i],t); // det is equal to double area of the element jac=w[i]*thick*det; // contribution to the stiffness matrix of the element bdbjac (sm,gmr,dd,gmc,jac); } destrm (dd); destrm (gmc); destrv (gp1); destrv (gp2); destrv (w); } destrm (gmr); } }void planeelemsubqt::res_stiffness_matrix (long eid,matrix &sm){ long transf; ivector nodes(nne); vector x(nne),y(nne); Mt->give_node_coord2d (x,y,eid); Mt->give_elemnodes (eid,nodes); stiffness_matrix (eid,0,0,sm,x,y); // transformation of stiffness matrix transf = Mt->locsystems (nodes); if (transf>0){ matrix tmat (ndofe,ndofe); transf_matrix (nodes,tmat); glmatrixtransf (sm,tmat); }}/** function computes mass matrix of the plane stress triangular finite element with quadratic approximation functions @param eid - number of element @param mm - mass matrix 25.8.2001*/void planeelemsubqt::mass_matrix (long eid,matrix &mm,vector &x,vector &y){ long i; double jac,det,thick,rho; ivector nodes(nne); vector w(intordmm),gp1(intordmm),gp2(intordmm),t(nne),dens(nne); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mc->give_thickness (eid,nodes,t); Mc->give_density (eid,nodes,dens); // det is equal to double area of the element det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]); gauss_points_tr (gp1.a,gp2.a,w.a,intordmm); fillm (0.0,mm); for (i=0;i<intordmm;i++){ bf_matrix (n,gp1[i],gp2[i]); thick = approx (gp1[i],gp2[i],t); rho = approx (gp1[i],gp2[i],dens); jac=w[i]*thick*rho*det; nnj (mm.a,n.a,jac,n.m,n.n); } }void planeelemsubqt::res_mass_matrix (long eid,matrix &mm){ vector x(nne),y(nne); Mt->give_node_coord2d (x,y,eid); mass_matrix (eid,mm,x,y);}void planeelemsubqt::load_matrix (long eid,matrix &lm) // function computes load matrix of the plane stress triangular // finite element with quadratic approximation functions // load vector is obtained after premultiplying load matrix // by nodal load values // // eid - number of element // lm - load matrix // // 25.8.2001{ long i; double jac,det,thick; ivector nodes(nne); vector x(nne),y(nne),w(intordmm),gp1(intordmm),gp2(intordmm),t(nne); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); Mc->give_thickness (eid,nodes,t); gauss_points_tr (gp1.a,gp2.a,w.a,intordmm); // det is equal to double area of the element det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]); fillm (0.0,lm); for (i=0;i<intordmm;i++){ bf_matrix (n,gp1[i],gp2[i]); thick = approx (gp1[i],gp2[i],t); jac=w[i]*thick*det; nnj (lm.a,n.a,jac,n.m,n.n); } }void planeelemsubqt::res_mainip_strains (long lcid,long eid){ vector x(nne),y(nne); Mt->give_node_coord2d (x,y,eid); mainip_strains (lcid,eid,0,0,x,y);}/** function computes strains in main integration points of element @param lcid - load case id @param eid - element id @param ri - row index @param ci - column index 10.5.2002*/void planeelemsubqt::mainip_strains (long lcid,long eid,long ri,long ci,vector &x,vector &y){ long i,ii,ipp; vector r(ndofe),gp1,gp2,w,eps,aux; ivector nodes(nne),cn(ndofe); matrix gm,tmat; Mt->give_elemnodes (eid,nodes); Mt->give_code_numbers (eid,cn.a); eldispl (lcid,eid,r.a,cn.a,ndofe); // transformation of displacement vector long transf = Mt->locsystems (nodes); if (transf>0){ allocv (ndofe,aux); allocm (ndofe,ndofe,tmat); transf_matrix (nodes,tmat); //locglobtransf (aux,r,tmat); lgvectortransf (aux,r,tmat); copyv (aux,r); destrv (aux); destrm (tmat); } for (ii=0;ii<nb;ii++){ allocv (intordsm[ii][ii],gp1); allocv (intordsm[ii][ii],gp2); allocv (intordsm[ii][ii],w); allocv (ncomp[ii],eps); allocm (ncomp[ii],ndofe,gm); gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][ii]); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ geom_matrix_block (gm,ii,x,y,gp1[i],gp2[i]); mxv (gm,r,eps); Mm->storestrain (lcid,ipp,cncomp[ii],ncomp[ii],eps); ipp++; } destrm (gm); destrv (eps); destrv (w); destrv (gp1); destrv (gp2); } }/** function computes strains in nodes of element @param lcid - load case id @param eid - element id 10.5.2002*/void planeelemsubqt::nod_strains (long lcid,long eid,long ri,long ci){ long i,ii,ipp; double *lsm,*lhs,*rhs; vector nxi(nne),neta(nne),r(ndofe),gp1,gp2,w,eps,aux,natcoord(2); ivector nodes(nne); lsm = new double [9]; nodecoord (nxi,neta); Mt->give_elemnodes (eid,nodes); for (ii=0;ii<nb;ii++){ allocv (intordsm[ii][ii],gp1); allocv (intordsm[ii][ii],gp2); allocv (intordsm[ii][ii],w); allocv (ncomp[ii],eps); lhs = new double [ncomp[ii]*3]; rhs = new double [ncomp[ii]*3]; gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][ii]); nullv (lsm,9); nullv (rhs,ncomp[ii]*3); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ Mm->givestrain (lcid,ipp,cncomp[ii],ncomp[ii],eps); natcoord[0]=gp1[i]; natcoord[1]=gp2[i]; matassem_lsm (lsm,natcoord); rhsassem_lsm (rhs,natcoord,eps); ipp++; } solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[ii]); Mt->strain_nodal_values (nodes,nxi,neta,nxi,lhs,2,cncomp[ii],ncomp[ii],lcid); delete [] lhs; delete [] rhs; destrv (eps); destrv (w); destrv (gp1); destrv (gp2); } delete [] lsm;}/** function computes strains on element @param val - array containing strains on element @param lcid - load case id @param eid - element id 15.7.2002*/void planeelemsubqt::elem_strains (double **stra,long lcid,long eid,long ri,long ci){ long i,ii,ipp; double xi,eta,*lsm,*lhs,*rhs; vector nxi(nne),neta(nne),gp1,gp2,w,eps,aux,natcoord(2); ivector nodes(nne); lsm = new double [9]; nodecoord (nxi,neta); Mt->give_elemnodes (eid,nodes); for (ii=0;ii<nb;ii++){ allocv (intordsm[ii][ii],gp1); allocv (intordsm[ii][ii],gp2); allocv (intordsm[ii][ii],w); allocv (ncomp[ii],eps); lhs = new double [ncomp[ii]*3]; rhs = new double [ncomp[ii]*3]; gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][ii]); nullv (lsm,9); nullv (rhs,ncomp[ii]*3); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp1[i]; eta=gp2[i]; Mm->givestrain (lcid,ipp,cncomp[ii],ncomp[ii],eps); natcoord[0]=xi; natcoord[1]=eta; matassem_lsm (lsm,natcoord); rhsassem_lsm (rhs,natcoord,eps); ipp++; } solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[ii]); nodal_values (stra,nxi,neta,nxi,lhs,2,cncomp[ii],ncomp[ii]); delete [] lhs; delete [] rhs; destrv (eps); destrv (w); destrv (gp1); destrv (gp2); } delete [] lsm;}/** function computes strains in arbitrary point on element @param lcid - load case id @param eid - element id @param xi,eta - natural coordinates @param fi,li - first and last indices @param eps - array containing strains 11.5.2002*/void planeelemsubqt::appstrain (long lcid,long eid,double xi,double eta,long fi,long ncomp,vector &eps){ long i,j,k; ivector nodes; vector nodval; if (ncomp != eps.n){ fprintf (stderr,"\n\n wrong interval of indices in function strain (%s, line %d).\n",__FILE__,__LINE__); abort (); } allocv (nne,nodes); allocv (nne,nodval); Mt->give_elemnodes (eid,nodes); k=0; for (i=fi;i<fi+ncomp;i++){ for (j=0;j<nne;j++){ nodval[j]=Mt->nodes[nodes[j]].strain[lcid*tncomp+i]; } eps[k]=approx (xi,eta,nodval); k++; } destrv (nodes); destrv (nodval);}/** function computes strains in all integration points @param lcid - load case id @param eid - element id @param ri,ci - row and column indices 10.5.2002*/void planeelemsubqt::allip_strains (double **stra,long lcid,long eid,long ri,long ci){ long i,ii,jj,ipp; //double xi,eta; vector eps(tncomp),gp1,gp2,w; for (ii=0;ii<nb;ii++){ for (jj=0;jj<nb;jj++){ if (intordsm[ii][jj]==0) continue; allocv (intordsm[ii][jj],gp1); allocv (intordsm[ii][jj],gp2); allocv (intordsm[ii][jj],w); gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][jj]); ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; for (i=0;i<intordsm[ii][jj];i++){ if (Mp->strainaver==0) //appval (xi,eta,0,tncomp,eps,stra); appval (gp1[i],gp2[i],0,tncomp,eps,stra); if (Mp->strainaver==1) appstrain (lcid,eid,gp1[i],gp2[i],0,tncomp,eps); Mm->storestrain (lcid,ipp,eps); ipp++; } destrv (w); destrv (gp2); destrv (gp1); } }}void planeelemsubqt::strains (long lcid,long eid,long ri,long ci){ long i,naep,ncp,sid; double **stra; vector coord,eps;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -