⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 plelemsubqt.cpp

📁 Finite element program for mechanical problem. It can solve various problem in solid problem
💻 CPP
📖 第 1 页 / 共 2 页
字号:
#include "plelemsubqt.h"#include "global.h"#include "globmat.h"#include "genfile.h"#include "adaptivity.h"#include "node.h"#include "element.h"#include "intpoints.h"#include "plelemlt.h"#include "plelemlq.h"#include "plelemqq.h"#include <stdlib.h>#include <math.h>planeelemsubqt::planeelemsubqt (void){  long i,j;  nne=6;  ndofe=12;  tncomp=3;  napfun=2;  intordmm=6;  ned=3;  nned=3;  intordb = 3;  nb=2;  ncomp = new long [nb];  ncomp[0]=2;  ncomp[1]=1;  cncomp = new long [nb];  cncomp[0]=0;  cncomp[1]=2;  nip = new long* [nb];  intordsm = new long* [nb];  for (i=0;i<nb;i++){    nip[i] = new long [nb];    intordsm[i] = new long [nb];  }    nip[0][0]=3;  nip[0][1]=0;  nip[1][0]=0;  nip[1][1]=3;    intordsm[0][0]=3;  intordsm[0][1]=0;  intordsm[1][0]=0;  intordsm[1][1]=3;  tnip=0;  for (i=0;i<nb;i++){    for (j=0;j<nb;j++){      tnip+=nip[i][j];    }  }}planeelemsubqt::~planeelemsubqt (void){  long i;    for (i=0;i<nb;i++){    delete [] nip[i];  }  delete [] nip;  }void planeelemsubqt::eleminit (long eid){  long ii,jj;  Mt->elements[eid].nb=nb;  Mt->elements[eid].intordsm = new long* [nb];  Mt->elements[eid].nip = new long* [nb];  for (ii=0;ii<nb;ii++){    Mt->elements[eid].intordsm[ii] = new long [nb];    Mt->elements[eid].nip[ii] = new long [nb];    for (jj=0;jj<nb;jj++){      Mt->elements[eid].intordsm[ii][jj]=intordsm[ii][jj];      Mt->elements[eid].nip[ii][jj]=nip[ii][jj];    }  }}/**   function approximates function defined by nodal values   @param xi,eta - natural coordinates   @param nodval - nodal values*/double planeelemsubqt::approx (double xi,double eta,vector &nodval){  double f;  vector bf(nne);    bf_quad_3_2d (bf.a,xi,eta);  scprd (bf,nodval,f);  return f;}/**   function returns matrix of base function   17.8.2001*/void planeelemsubqt::bf_matrix (matrix &n,double xi,double eta){  long i,i1,i2;  vector bf(nne);    bf_quad_3_2d (bf.a,xi,eta);  fillm (0.0,n);    i1=0;  i2=1;  for (i=0;i<nne;i++){    n[0][i1]=bf[i];  i1+=2;    n[1][i2]=bf[i];  i2+=2;  }}/**   function assembles geometric matrix      @param gm - geometric matrix   @param x,y - node coordinates   @param xi,eta - natural coordinates   */void planeelemsubqt::geom_matrix (matrix &gm,vector &x,vector &y,double xi,double eta){  long i,i1,i2;  double jac;  vector dx(nne),dy(nne);  dx_bf_quad_3_2d (dx.a,xi,eta);  dy_bf_quad_3_2d (dy.a,xi,eta);  derivatives_2d (dx,dy,jac,x,y,xi,eta);  fillm (0.0,gm);  i1=0;  i2=1;  for (i=0;i<nne;i++){    gm[0][i1]=dx[i];    gm[1][i2]=dy[i];    gm[2][i1]=dy[i];  i1+=2;    gm[2][i2]=dx[i];  i2+=2;  }}/**   function assembles blocks of geometric matrix      @param gm - geometric matrix   @param x,y - node coordinates   @param ri - row index   @param xi,eta - natural coordinates   */void planeelemsubqt::geom_matrix_block (matrix &gm,double ri,vector &x,vector &y,double xi,double eta){  long i,i1,i2;  double jac;  vector dx(nne),dy(nne);    dx_bf_quad_3_2d (dx.a,xi,eta);  dy_bf_quad_3_2d (dy.a,xi,eta);  derivatives_2d (dx,dy,jac,x,y,xi,eta);  fillm (0.0,gm);  if (ri==0){    i1=0;  i2=1;    for (i=0;i<nne;i++){      gm[0][i1]=dx[i];  i1+=2;      gm[1][i2]=dy[i];  i2+=2;    }  }    if (ri==1){    i1=0;  i2=1;    for (i=0;i<nne;i++){      gm[0][i1]=dy[i];  i1+=2;      gm[0][i2]=dx[i];  i2+=2;    }  }}void planeelemsubqt::dmatblock (long ri,long ci,matrix &d, matrix &dd){  fillm (0.0,dd);    if (ri==0 && ci==0){    dd[0][0]=d[0][0];  dd[0][1]=d[0][1];    dd[1][0]=d[1][0];  dd[1][1]=d[1][1];  }  if (ri==0 && ci==1){    dd[0][0]=d[0][2];    dd[1][0]=d[1][2];  }  if (ri==1 && ci==0){    dd[0][0]=d[2][0];  dd[0][1]=d[2][1];  }  if (ri==1 && ci==1){    dd[0][0]=d[2][2];  }}/**   transformation matrix x_g = T x_l   17.8.2001*/void planeelemsubqt::transf_matrix (ivector &nodes,matrix &tmat){  long i,n,m;  fillm (0.0,tmat);  n=nodes.n;  m=tmat.m;  for (i=0;i<m;i++){    tmat[i][i]=1.0;  }    for (i=0;i<n;i++){    if (Mt->nodes[nodes[i]].transf>0){      tmat[i*2][i*2]   = Mt->nodes[nodes[i]].e1[0];  tmat[i*2][i*2+1]   = Mt->nodes[nodes[i]].e2[0];      tmat[i*2+1][i*2] = Mt->nodes[nodes[i]].e1[1];  tmat[i*2+1][i*2+1] = Mt->nodes[nodes[i]].e2[1];    }  }}/**   function computes stiffness matrix of plane stress triangular   finite element with quadratic approximation functions   @param eid - number of element   @param sm - stiffness matrix   25.8.2001*/void planeelemsubqt::stiffness_matrix (long eid,long ri,long ci,matrix &sm,vector &x,vector &y){  long i,ii,jj,ipp;  double jac,det,thick;  ivector nodes(nne);  vector t(nne),gp1,gp2,w;  matrix gmr,gmc,dd,d(tncomp,tncomp);    Mt->give_elemnodes (eid,nodes);  Mc->give_thickness (eid,nodes,t);      //  det is equal to double area of the element  det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]);    fillm (0.0,sm);    for (ii=0;ii<nb;ii++){    allocm (ncomp[ii],ndofe,gmr);    for (jj=0;jj<nb;jj++){      if (intordsm[ii][jj]==0)  continue;            allocm (ncomp[jj],ndofe,gmc);      allocm (ncomp[ii],ncomp[jj],dd);      allocv (intordsm[ii][jj],gp1);      allocv (intordsm[ii][jj],gp2);      allocv (intordsm[ii][jj],w);            gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][jj]);      ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];            for (i=0;i<intordsm[ii][jj];i++){	// geometric matrix	geom_matrix_block (gmr,ii,x,y,gp1[i],gp2[i]);	geom_matrix_block (gmc,jj,x,y,gp1[i],gp2[i]);		//  stiffness matrix of material	Mm->matstiff (d,ipp);  ipp++;	dmatblock (ii,jj,d,dd);		thick = approx (gp1[i],gp2[i],t);		//  det is equal to double area of the element	jac=w[i]*thick*det;    	//  contribution to the stiffness matrix of the element	bdbjac (sm,gmr,dd,gmc,jac);      }      destrm (dd);  destrm (gmc);  destrv (gp1);  destrv (gp2);  destrv (w);    }    destrm (gmr);  }  }void planeelemsubqt::res_stiffness_matrix (long eid,matrix &sm){  long transf;  ivector nodes(nne);  vector x(nne),y(nne);  Mt->give_node_coord2d (x,y,eid);  Mt->give_elemnodes (eid,nodes);  stiffness_matrix (eid,0,0,sm,x,y);  //  transformation of stiffness matrix  transf = Mt->locsystems (nodes);  if (transf>0){    matrix tmat (ndofe,ndofe);    transf_matrix (nodes,tmat);    glmatrixtransf (sm,tmat);  }}/**   function computes mass matrix of the plane stress triangular   finite element with quadratic approximation functions   @param eid - number of element   @param mm - mass matrix   25.8.2001*/void planeelemsubqt::mass_matrix (long eid,matrix &mm,vector &x,vector &y){  long i;  double jac,det,thick,rho;  ivector nodes(nne);  vector w(intordmm),gp1(intordmm),gp2(intordmm),t(nne),dens(nne);  matrix n(napfun,ndofe);    Mt->give_elemnodes (eid,nodes);  Mc->give_thickness (eid,nodes,t);  Mc->give_density (eid,nodes,dens);  //  det is equal to double area of the element  det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]);    gauss_points_tr (gp1.a,gp2.a,w.a,intordmm);    fillm (0.0,mm);    for (i=0;i<intordmm;i++){    bf_matrix (n,gp1[i],gp2[i]);        thick = approx (gp1[i],gp2[i],t);    rho = approx (gp1[i],gp2[i],dens);        jac=w[i]*thick*rho*det;        nnj (mm.a,n.a,jac,n.m,n.n);  }  }void planeelemsubqt::res_mass_matrix (long eid,matrix &mm){  vector x(nne),y(nne);  Mt->give_node_coord2d (x,y,eid);  mass_matrix (eid,mm,x,y);}void planeelemsubqt::load_matrix (long eid,matrix &lm)  //  function computes load matrix of the plane stress triangular  //  finite element with quadratic approximation functions  //  load vector is obtained after premultiplying load matrix  //  by nodal load values  //    //  eid - number of element  //  lm - load matrix  //  //  25.8.2001{  long i;  double jac,det,thick;  ivector nodes(nne);  vector x(nne),y(nne),w(intordmm),gp1(intordmm),gp2(intordmm),t(nne);  matrix n(napfun,ndofe);    Mt->give_elemnodes (eid,nodes);  Mt->give_node_coord2d (x,y,eid);  Mc->give_thickness (eid,nodes,t);  gauss_points_tr (gp1.a,gp2.a,w.a,intordmm);  //  det is equal to double area of the element  det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]);    fillm (0.0,lm);    for (i=0;i<intordmm;i++){    bf_matrix (n,gp1[i],gp2[i]);        thick = approx (gp1[i],gp2[i],t);        jac=w[i]*thick*det;        nnj (lm.a,n.a,jac,n.m,n.n);  }  }void planeelemsubqt::res_mainip_strains (long lcid,long eid){  vector x(nne),y(nne);  Mt->give_node_coord2d (x,y,eid);  mainip_strains (lcid,eid,0,0,x,y);}/**   function computes strains in main integration points of element      @param lcid - load case id   @param eid - element id   @param ri - row index   @param ci - column index      10.5.2002*/void planeelemsubqt::mainip_strains (long lcid,long eid,long ri,long ci,vector &x,vector &y){  long i,ii,ipp;  vector r(ndofe),gp1,gp2,w,eps,aux;  ivector nodes(nne),cn(ndofe);  matrix gm,tmat;  Mt->give_elemnodes (eid,nodes);  Mt->give_code_numbers (eid,cn.a);  eldispl (lcid,eid,r.a,cn.a,ndofe);    //  transformation of displacement vector  long transf = Mt->locsystems (nodes);  if (transf>0){    allocv (ndofe,aux);    allocm (ndofe,ndofe,tmat);    transf_matrix (nodes,tmat);    //locglobtransf (aux,r,tmat);    lgvectortransf (aux,r,tmat);    copyv (aux,r);    destrv (aux);    destrm (tmat);  }    for (ii=0;ii<nb;ii++){    allocv (intordsm[ii][ii],gp1);    allocv (intordsm[ii][ii],gp2);    allocv (intordsm[ii][ii],w);    allocv (ncomp[ii],eps);    allocm (ncomp[ii],ndofe,gm);        gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][ii]);        ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];    for (i=0;i<intordsm[ii][ii];i++){      geom_matrix_block (gm,ii,x,y,gp1[i],gp2[i]);      mxv (gm,r,eps);            Mm->storestrain (lcid,ipp,cncomp[ii],ncomp[ii],eps);      ipp++;    }    destrm (gm);  destrv (eps);  destrv (w);  destrv (gp1);  destrv (gp2);  }  }/**   function computes strains in nodes of element      @param lcid - load case id   @param eid - element id      10.5.2002*/void planeelemsubqt::nod_strains (long lcid,long eid,long ri,long ci){  long i,ii,ipp;  double *lsm,*lhs,*rhs;  vector nxi(nne),neta(nne),r(ndofe),gp1,gp2,w,eps,aux,natcoord(2);  ivector nodes(nne);  lsm = new double [9];  nodecoord (nxi,neta);  Mt->give_elemnodes (eid,nodes);  for (ii=0;ii<nb;ii++){    allocv (intordsm[ii][ii],gp1);    allocv (intordsm[ii][ii],gp2);    allocv (intordsm[ii][ii],w);    allocv (ncomp[ii],eps);    lhs = new double [ncomp[ii]*3];    rhs = new double [ncomp[ii]*3];    gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][ii]);        nullv (lsm,9);    nullv (rhs,ncomp[ii]*3);        ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];    for (i=0;i<intordsm[ii][ii];i++){      Mm->givestrain (lcid,ipp,cncomp[ii],ncomp[ii],eps);            natcoord[0]=gp1[i];  natcoord[1]=gp2[i];      matassem_lsm (lsm,natcoord);      rhsassem_lsm (rhs,natcoord,eps);            ipp++;    }        solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[ii]);    Mt->strain_nodal_values (nodes,nxi,neta,nxi,lhs,2,cncomp[ii],ncomp[ii],lcid);    delete [] lhs;  delete [] rhs;    destrv (eps);  destrv (w);  destrv (gp1);  destrv (gp2);  }    delete [] lsm;}/**   function computes strains on element      @param val - array containing strains on element   @param lcid - load case id   @param eid - element id      15.7.2002*/void planeelemsubqt::elem_strains (double **stra,long lcid,long eid,long ri,long ci){  long i,ii,ipp;  double xi,eta,*lsm,*lhs,*rhs;  vector nxi(nne),neta(nne),gp1,gp2,w,eps,aux,natcoord(2);  ivector nodes(nne);  lsm = new double [9];    nodecoord (nxi,neta);  Mt->give_elemnodes (eid,nodes);    for (ii=0;ii<nb;ii++){    allocv (intordsm[ii][ii],gp1);    allocv (intordsm[ii][ii],gp2);    allocv (intordsm[ii][ii],w);    allocv (ncomp[ii],eps);    lhs = new double [ncomp[ii]*3];    rhs = new double [ncomp[ii]*3];    gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][ii]);        nullv (lsm,9);    nullv (rhs,ncomp[ii]*3);        ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];    for (i=0;i<intordsm[ii][ii];i++){      xi=gp1[i];      eta=gp2[i];            Mm->givestrain (lcid,ipp,cncomp[ii],ncomp[ii],eps);            natcoord[0]=xi;  natcoord[1]=eta;      matassem_lsm (lsm,natcoord);      rhsassem_lsm (rhs,natcoord,eps);      ipp++;    }        solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[ii]);    nodal_values (stra,nxi,neta,nxi,lhs,2,cncomp[ii],ncomp[ii]);    delete [] lhs;  delete [] rhs;    destrv (eps);  destrv (w);  destrv (gp1);  destrv (gp2);  }    delete [] lsm;}/**   function computes strains in arbitrary point on element      @param lcid - load case id   @param eid - element id   @param xi,eta - natural coordinates   @param fi,li - first and last indices   @param eps - array containing strains      11.5.2002*/void planeelemsubqt::appstrain (long lcid,long eid,double xi,double eta,long fi,long ncomp,vector &eps){  long i,j,k;  ivector nodes;  vector nodval;    if (ncomp != eps.n){    fprintf (stderr,"\n\n wrong interval of indices in function strain (%s, line %d).\n",__FILE__,__LINE__);    abort ();  }  allocv (nne,nodes);  allocv (nne,nodval);  Mt->give_elemnodes (eid,nodes);  k=0;  for (i=fi;i<fi+ncomp;i++){    for (j=0;j<nne;j++){      nodval[j]=Mt->nodes[nodes[j]].strain[lcid*tncomp+i];    }    eps[k]=approx (xi,eta,nodval);    k++;  }    destrv (nodes);  destrv (nodval);}/**   function computes strains in all integration points      @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices      10.5.2002*/void planeelemsubqt::allip_strains (double **stra,long lcid,long eid,long ri,long ci){  long i,ii,jj,ipp;  //double xi,eta;  vector eps(tncomp),gp1,gp2,w;    for (ii=0;ii<nb;ii++){    for (jj=0;jj<nb;jj++){      if (intordsm[ii][jj]==0)  continue;      allocv (intordsm[ii][jj],gp1);      allocv (intordsm[ii][jj],gp2);      allocv (intordsm[ii][jj],w);      gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][jj]);      ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];            for (i=0;i<intordsm[ii][jj];i++){	if (Mp->strainaver==0)	  //appval (xi,eta,0,tncomp,eps,stra);	  appval (gp1[i],gp2[i],0,tncomp,eps,stra);	if (Mp->strainaver==1)	  appstrain (lcid,eid,gp1[i],gp2[i],0,tncomp,eps);	Mm->storestrain (lcid,ipp,eps);	ipp++;      }      destrv (w);  destrv (gp2);  destrv (gp1);    }  }}void planeelemsubqt::strains (long lcid,long eid,long ri,long ci){  long i,naep,ncp,sid;  double **stra;  vector coord,eps;  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -