📄 funcalhgpvfishertest.m
字号:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% There a dataset containing N elements, K of which is type A.
%% randomly select n element form this dataset, i of which is type A.
%% p-value(k) is the probability that i>=k
%% p-value(k)' is the probability that i=k
% clear
%% p12 = P(N21≥k) = sum(Pi) , for i=n : min(N1,N2) ;
%% Pi = P(N21=i) = C(N1,i)*C((N-N1),(N2-i))/C(N,N2)
% X=[ 4 7 6 24 ];
% X=[4 44 19 2663 ];
% X=[14 37 142 2562];
% X=[1 3 4 12];
% X=X*1000;
% X=[2 2926 116 62128];
function Pv=funCalHGPvFisherTest(X)
if X(1)>=0 & X(2)>0 & X(2)>=X(1) & X(3)>=X(1) & X(4)>=X(2) & X(4)>=X(3)
if X(1)==0
Pv=1;
else
k=X(1);n=X(2);K=X(3);N=X(4);
Pv=0;
for i=k:min(K,n)
%%%%%%% Method 1 (good for its prevention of overflow)
% A=[1:K, 1:(N-K), 1:n,1:(N-n)];
% B=[1:i,1:(K-i),1:(n-i),1:(N-K-n+i),1:N];
A=[(K-i+1):K, (N-K-n+i+1):(N-K), (n-i+1):n];
B=[1:i, (N-n+1):N ];
Pv=Pv+funDivideAs_Bs(A,B);
% Pv=Pv+funHGP(k,n,K,N,i);
%%%%%%% Method 2
% Pv=Pv+nchoosek(K,i)*nchoosek((N-K),(n-i))/nchoosek(N,n);
end
% Pv
end
else
Pv=NaN;
end
% function Pvp=calHGPvP(i,n,K,N)
% Pvp=nchoosek(K,i)*nchoosek((N-K),(n-i))/nchoosek(N,n);
%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -