📄 ecgpuwave.1
字号:
.TH ECGPUWAVE 1 "24 February 2006" "ecgpuwave 1.1" "WFDB Applications Guide".SH NAMEecgpuwave \- QRS detector and waveform limit locator.SH SYNOPSIS\fBecgpuwave -r\fR \fIrecord\fR \fB-a\fR \fIannotator\fR [ \fIoptions\fR ... ].SH DESCRIPTION\fBecgpuwave\fR analyses an ECG signal from the specified \fIrecord\fR,detecting the QRS complexes and locating the beginning, peak, and end of the P,QRS, and ST-T waveforms. The output of \fBecgpuwave\fR is written as astandard WFDB-format annotation file associated with the specified\fIannotator\fR. This file can be converted into text format using\fBrdann\fR(1) or viewed using \fBwave\fR(1)..PPThe QRS detector is based on the algorithm of Pan and Tompkins (reference 1)with some improvements that make use of slope information (reference 2).Optionally, QRS annotations can be provided as input (see option \fB-i\fR),permitting the use of external QRS detectors such as \fBsqrs\fR(1) ormanually-edited annotations (which can be created using \fBwave\fR(1)).The waveform limit locator is based on the algorithm described in reference 3and evaluated in references 3 and 4..PPThe output annotation file contains PWAVE ("\fBp\fR") and TWAVE ("\fBt\fR")annotations that indicate the P- and T-wave peaks, as well asQRS annotations (NORMAL ("\fBN\fR") if generated by the built-in QRSdetector, or copies of the input QRS annotations if these weresupplied). \fBecgpuwave\fR classifies each T wave as type 0 (normal),1 (inverted), 2 (positive monophasic), 3 (negative monophasic),4 (biphasic negative-positive), or 5 (biphasic positive-negative);this numeric classification is written into the \fBnum\fR field ofeach TWAVE annotation. The P, QRS, and T waveform onsets and ends aremarked in the output annotation file using WFON ("\fB(\fR") and WFOFF("\fB)\fR") annotations. The \fBnum\fR field of each WFON and WFOFFannotation designates the type of waveform with which it is associated:0 for a P wave, 1 for a QRS complex, or 2 for a T wave..PP\fIOptions\fR include:.TP\fB-f\fR \fItime\fRBegin at the specified \fItime\fR (default: the beginning of the record)..TP\fB-i\fR \fIinput-annotator\fRRead QRS locations from the specified \fIinput-annotator\fR (and copy themto the output annotation file). Default: run the built-in QRS detector..TP \fB-n\fR \fIbeat-type\fRSpecify which beats to process (must be used togetherwith \fB-i\fR): \fIbeat_type\fR may be 0 (default: process all beats)or 1 (process only beats labelled as NORMAL ("\fBN\fR") by the inputannotator)..TP\fB-s\fR \fIn\fRAnalyze signal \fIn\fR (default: signal 0)..TP\fB-t\fR \fItime\fRStop at the specified \fItime\fR (default: the end of the record)..SH ENVIRONMENT.PPIt may be necessary to set and export the shell variable \fBWFDB\fR (see\fBsetwfdb\fR(1))..SH SEE ALSO\fBrdann\fR(1), \fBsqrs\fR(1), \fBwave\fR(1), \fBwqrs\fR(1).SH REFERENCES.br1. Pan J and Tompkins WJ. A Real-Time QRS Detection Algorithm. \fIIEEETransactions on Biomedical Engineering\fB 32\fR(3):230-236, 1985. .br2. Laguna P. \fINew Electrocardiographic Signal Processing Techniques:Application to Long-term Records.\fR Ph. D. dissertation, Science Faculty,University of Zaragoza, 1990..br3. Laguna P, Jan\['e] R, Caminal P. Automatic Detection of Wave Boundaries inMultilead ECG Signals: Validation with the CSE Database. \fIComputers andBiomedical Research \fB 27\fR(1):45-60, 1994..br4. Jan\['e] R, Blasi A, Garc\['i]a J, and Laguna P. Evaluation of an automaticthreshold based detector of waveform limits in Holter ECG with the QTdatabase. \fIComputers in Cardiology \fB24\fR:295-298 (1997; available athttp://www.physionet.org/physiobank/database/qtdb/eval/ ).SH AVAILABILITY\fBecgpuwave\fR is available as part of PhysioToolkit under the GPL (see\fBSOURCE\fR below)..SH AUTHORSPablo Laguna (laguna@posta.unizar.es), Raimon Jan\['e], Eudald Bogatell,and David Vigo Anglada.SH SOURCEhttp://www.physionet.org/physiotools/ecgpuwave/src/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -