📄 fftreal.hpp
字号:
sf = temp_ptr;
}
}
template <class DT>
void FFTReal <DT>::compute_direct_pass_1_2 (DataType df [], const DataType x []) const
{
assert (df != 0);
assert (x != 0);
assert (df != x);
const long * const bit_rev_lut_ptr = get_br_ptr ();
long coef_index = 0;
do
{
const long rev_index_0 = bit_rev_lut_ptr [coef_index];
const long rev_index_1 = bit_rev_lut_ptr [coef_index + 1];
const long rev_index_2 = bit_rev_lut_ptr [coef_index + 2];
const long rev_index_3 = bit_rev_lut_ptr [coef_index + 3];
DataType * const df2 = df + coef_index;
df2 [1] = x [rev_index_0] - x [rev_index_1];
df2 [3] = x [rev_index_2] - x [rev_index_3];
const DataType sf_0 = x [rev_index_0] + x [rev_index_1];
const DataType sf_2 = x [rev_index_2] + x [rev_index_3];
df2 [0] = sf_0 + sf_2;
df2 [2] = sf_0 - sf_2;
coef_index += 4;
}
while (coef_index < _length);
}
template <class DT>
void FFTReal <DT>::compute_direct_pass_3 (DataType df [], const DataType sf []) const
{
assert (df != 0);
assert (sf != 0);
assert (df != sf);
const DataType sqrt2_2 = DataType (SQRT2 * 0.5);
long coef_index = 0;
do
{
DataType v;
df [coef_index] = sf [coef_index] + sf [coef_index + 4];
df [coef_index + 4] = sf [coef_index] - sf [coef_index + 4];
df [coef_index + 2] = sf [coef_index + 2];
df [coef_index + 6] = sf [coef_index + 6];
v = (sf [coef_index + 5] - sf [coef_index + 7]) * sqrt2_2;
df [coef_index + 1] = sf [coef_index + 1] + v;
df [coef_index + 3] = sf [coef_index + 1] - v;
v = (sf [coef_index + 5] + sf [coef_index + 7]) * sqrt2_2;
df [coef_index + 5] = v + sf [coef_index + 3];
df [coef_index + 7] = v - sf [coef_index + 3];
coef_index += 8;
}
while (coef_index < _length);
}
template <class DT>
void FFTReal <DT>::compute_direct_pass_n (DataType df [], const DataType sf [], int pass) const
{
assert (df != 0);
assert (sf != 0);
assert (df != sf);
assert (pass >= 3);
assert (pass < _nbr_bits);
if (pass <= TRIGO_BD_LIMIT)
{
compute_direct_pass_n_lut (df, sf, pass);
}
else
{
compute_direct_pass_n_osc (df, sf, pass);
}
}
template <class DT>
void FFTReal <DT>::compute_direct_pass_n_lut (DataType df [], const DataType sf [], int pass) const
{
assert (df != 0);
assert (sf != 0);
assert (df != sf);
assert (pass >= 3);
assert (pass < _nbr_bits);
const long nbr_coef = 1 << pass;
const long h_nbr_coef = nbr_coef >> 1;
const long d_nbr_coef = nbr_coef << 1;
long coef_index = 0;
const DataType * const cos_ptr = get_trigo_ptr (pass);
do
{
const DataType * const sf1r = sf + coef_index;
const DataType * const sf2r = sf1r + nbr_coef;
DataType * const dfr = df + coef_index;
DataType * const dfi = dfr + nbr_coef;
// Extreme coefficients are always real
dfr [0] = sf1r [0] + sf2r [0];
dfi [0] = sf1r [0] - sf2r [0]; // dfr [nbr_coef] =
dfr [h_nbr_coef] = sf1r [h_nbr_coef];
dfi [h_nbr_coef] = sf2r [h_nbr_coef];
// Others are conjugate complex numbers
const DataType * const sf1i = sf1r + h_nbr_coef;
const DataType * const sf2i = sf1i + nbr_coef;
for (long i = 1; i < h_nbr_coef; ++ i)
{
const DataType c = cos_ptr [i]; // cos (i*PI/nbr_coef);
const DataType s = cos_ptr [h_nbr_coef - i]; // sin (i*PI/nbr_coef);
DataType v;
v = sf2r [i] * c - sf2i [i] * s;
dfr [i] = sf1r [i] + v;
dfi [-i] = sf1r [i] - v; // dfr [nbr_coef - i] =
v = sf2r [i] * s + sf2i [i] * c;
dfi [i] = v + sf1i [i];
dfi [nbr_coef - i] = v - sf1i [i];
}
coef_index += d_nbr_coef;
}
while (coef_index < _length);
}
template <class DT>
void FFTReal <DT>::compute_direct_pass_n_osc (DataType df [], const DataType sf [], int pass) const
{
assert (df != 0);
assert (sf != 0);
assert (df != sf);
assert (pass > TRIGO_BD_LIMIT);
assert (pass < _nbr_bits);
const long nbr_coef = 1 << pass;
const long h_nbr_coef = nbr_coef >> 1;
const long d_nbr_coef = nbr_coef << 1;
long coef_index = 0;
OscType & osc = _trigo_osc [pass - (TRIGO_BD_LIMIT + 1)];
do
{
const DataType * const sf1r = sf + coef_index;
const DataType * const sf2r = sf1r + nbr_coef;
DataType * const dfr = df + coef_index;
DataType * const dfi = dfr + nbr_coef;
osc.clear_buffers ();
// Extreme coefficients are always real
dfr [0] = sf1r [0] + sf2r [0];
dfi [0] = sf1r [0] - sf2r [0]; // dfr [nbr_coef] =
dfr [h_nbr_coef] = sf1r [h_nbr_coef];
dfi [h_nbr_coef] = sf2r [h_nbr_coef];
// Others are conjugate complex numbers
const DataType * const sf1i = sf1r + h_nbr_coef;
const DataType * const sf2i = sf1i + nbr_coef;
for (long i = 1; i < h_nbr_coef; ++ i)
{
osc.step ();
const DataType c = osc.get_cos ();
const DataType s = osc.get_sin ();
DataType v;
v = sf2r [i] * c - sf2i [i] * s;
dfr [i] = sf1r [i] + v;
dfi [-i] = sf1r [i] - v; // dfr [nbr_coef - i] =
v = sf2r [i] * s + sf2i [i] * c;
dfi [i] = v + sf1i [i];
dfi [nbr_coef - i] = v - sf1i [i];
}
coef_index += d_nbr_coef;
}
while (coef_index < _length);
}
// Transform in several pass
template <class DT>
void FFTReal <DT>::compute_ifft_general (const DataType f [], DataType x []) const
{
assert (f != 0);
assert (f != use_buffer ());
assert (x != 0);
assert (x != use_buffer ());
assert (x != f);
DataType * sf = const_cast <DataType *> (f);
DataType * df;
DataType * df_temp;
if (_nbr_bits & 1)
{
df = use_buffer ();
df_temp = x;
}
else
{
df = x;
df_temp = use_buffer ();
}
for (int pass = _nbr_bits - 1; pass >= 3; -- pass)
{
compute_inverse_pass_n (df, sf, pass);
if (pass < _nbr_bits - 1)
{
DataType * const temp_ptr = df;
df = sf;
sf = temp_ptr;
}
else
{
sf = df;
df = df_temp;
}
}
compute_inverse_pass_3 (df, sf);
compute_inverse_pass_1_2 (x, df);
}
template <class DT>
void FFTReal <DT>::compute_inverse_pass_n (DataType df [], const DataType sf [], int pass) const
{
assert (df != 0);
assert (sf != 0);
assert (df != sf);
assert (pass >= 3);
assert (pass < _nbr_bits);
if (pass <= TRIGO_BD_LIMIT)
{
compute_inverse_pass_n_lut (df, sf, pass);
}
else
{
compute_inverse_pass_n_osc (df, sf, pass);
}
}
template <class DT>
void FFTReal <DT>::compute_inverse_pass_n_lut (DataType df [], const DataType sf [], int pass) const
{
assert (df != 0);
assert (sf != 0);
assert (df != sf);
assert (pass >= 3);
assert (pass < _nbr_bits);
const long nbr_coef = 1 << pass;
const long h_nbr_coef = nbr_coef >> 1;
const long d_nbr_coef = nbr_coef << 1;
long coef_index = 0;
const DataType * const cos_ptr = get_trigo_ptr (pass);
do
{
const DataType * const sfr = sf + coef_index;
const DataType * const sfi = sfr + nbr_coef;
DataType * const df1r = df + coef_index;
DataType * const df2r = df1r + nbr_coef;
// Extreme coefficients are always real
df1r [0] = sfr [0] + sfi [0]; // + sfr [nbr_coef]
df2r [0] = sfr [0] - sfi [0]; // - sfr [nbr_coef]
df1r [h_nbr_coef] = sfr [h_nbr_coef] * 2;
df2r [h_nbr_coef] = sfi [h_nbr_coef] * 2;
// Others are conjugate complex numbers
DataType * const df1i = df1r + h_nbr_coef;
DataType * const df2i = df1i + nbr_coef;
for (long i = 1; i < h_nbr_coef; ++ i)
{
df1r [i] = sfr [i] + sfi [-i]; // + sfr [nbr_coef - i]
df1i [i] = sfi [i] - sfi [nbr_coef - i];
const DataType c = cos_ptr [i]; // cos (i*PI/nbr_coef);
const DataType s = cos_ptr [h_nbr_coef - i]; // sin (i*PI/nbr_coef);
const DataType vr = sfr [i] - sfi [-i]; // - sfr [nbr_coef - i]
const DataType vi = sfi [i] + sfi [nbr_coef - i];
df2r [i] = vr * c + vi * s;
df2i [i] = vi * c - vr * s;
}
coef_index += d_nbr_coef;
}
while (coef_index < _length);
}
template <class DT>
void FFTReal <DT>::compute_inverse_pass_n_osc (DataType df [], const DataType sf [], int pass) const
{
assert (df != 0);
assert (sf != 0);
assert (df != sf);
assert (pass > TRIGO_BD_LIMIT);
assert (pass < _nbr_bits);
const long nbr_coef = 1 << pass;
const long h_nbr_coef = nbr_coef >> 1;
const long d_nbr_coef = nbr_coef << 1;
long coef_index = 0;
OscType & osc = _trigo_osc [pass - (TRIGO_BD_LIMIT + 1)];
do
{
const DataType * const sfr = sf + coef_index;
const DataType * const sfi = sfr + nbr_coef;
DataType * const df1r = df + coef_index;
DataType * const df2r = df1r + nbr_coef;
osc.clear_buffers ();
// Extreme coefficients are always real
df1r [0] = sfr [0] + sfi [0]; // + sfr [nbr_coef]
df2r [0] = sfr [0] - sfi [0]; // - sfr [nbr_coef]
df1r [h_nbr_coef] = sfr [h_nbr_coef] * 2;
df2r [h_nbr_coef] = sfi [h_nbr_coef] * 2;
// Others are conjugate complex numbers
DataType * const df1i = df1r + h_nbr_coef;
DataType * const df2i = df1i + nbr_coef;
for (long i = 1; i < h_nbr_coef; ++ i)
{
df1r [i] = sfr [i] + sfi [-i]; // + sfr [nbr_coef - i]
df1i [i] = sfi [i] - sfi [nbr_coef - i];
osc.step ();
const DataType c = osc.get_cos ();
const DataType s = osc.get_sin ();
const DataType vr = sfr [i] - sfi [-i]; // - sfr [nbr_coef - i]
const DataType vi = sfi [i] + sfi [nbr_coef - i];
df2r [i] = vr * c + vi * s;
df2i [i] = vi * c - vr * s;
}
coef_index += d_nbr_coef;
}
while (coef_index < _length);
}
template <class DT>
void FFTReal <DT>::compute_inverse_pass_3 (DataType df [], const DataType sf []) const
{
assert (df != 0);
assert (sf != 0);
assert (df != sf);
const DataType sqrt2_2 = DataType (SQRT2 * 0.5);
long coef_index = 0;
do
{
df [coef_index] = sf [coef_index] + sf [coef_index + 4];
df [coef_index + 4] = sf [coef_index] - sf [coef_index + 4];
df [coef_index + 2] = sf [coef_index + 2] * 2;
df [coef_index + 6] = sf [coef_index + 6] * 2;
df [coef_index + 1] = sf [coef_index + 1] + sf [coef_index + 3];
df [coef_index + 3] = sf [coef_index + 5] - sf [coef_index + 7];
const DataType vr = sf [coef_index + 1] - sf [coef_index + 3];
const DataType vi = sf [coef_index + 5] + sf [coef_index + 7];
df [coef_index + 5] = (vr + vi) * sqrt2_2;
df [coef_index + 7] = (vi - vr) * sqrt2_2;
coef_index += 8;
}
while (coef_index < _length);
}
template <class DT>
void FFTReal <DT>::compute_inverse_pass_1_2 (DataType x [], const DataType sf []) const
{
assert (x != 0);
assert (sf != 0);
assert (x != sf);
const long * bit_rev_lut_ptr = get_br_ptr ();
const DataType * sf2 = sf;
long coef_index = 0;
do
{
{
const DataType b_0 = sf2 [0] + sf2 [2];
const DataType b_2 = sf2 [0] - sf2 [2];
const DataType b_1 = sf2 [1] * 2;
const DataType b_3 = sf2 [3] * 2;
x [bit_rev_lut_ptr [0]] = b_0 + b_1;
x [bit_rev_lut_ptr [1]] = b_0 - b_1;
x [bit_rev_lut_ptr [2]] = b_2 + b_3;
x [bit_rev_lut_ptr [3]] = b_2 - b_3;
}
{
const DataType b_0 = sf2 [4] + sf2 [6];
const DataType b_2 = sf2 [4] - sf2 [6];
const DataType b_1 = sf2 [5] * 2;
const DataType b_3 = sf2 [7] * 2;
x [bit_rev_lut_ptr [4]] = b_0 + b_1;
x [bit_rev_lut_ptr [5]] = b_0 - b_1;
x [bit_rev_lut_ptr [6]] = b_2 + b_3;
x [bit_rev_lut_ptr [7]] = b_2 - b_3;
}
sf2 += 8;
coef_index += 8;
bit_rev_lut_ptr += 8;
}
while (coef_index < _length);
}
#endif // FFTReal_CODEHEADER_INCLUDED
#undef FFTReal_CURRENT_CODEHEADER
/*\\\ EOF \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -