📄 mk_bnet.m
字号:
function bnet = mk_bnet(dag, node_sizes, varargin)% MK_BNET Make a Bayesian network.%% BNET = MK_BNET(DAG, NODE_SIZES, ...) makes a graphical model with an arc from i to j iff DAG(i,j) = 1.% Thus DAG is the adjacency matrix for a directed acyclic graph.% The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary.%% node_sizes(i) is the number of values node i can take on,% or the length of node i if i is a continuous-valued vector.% node_sizes(i) = 1 if i is a utility node.% % Below are the names of optional arguments [and their default value in brackets].% Pass as 'PropertyName1', PropertyValue1, 'PropertyName2', PropertyValue2, ...% % discrete - the list of nodes which are discrete random variables [1:N]% equiv_class - equiv_class(i)=j means node i gets its params from CPD{j} [1:N]% observed - the list of nodes which will definitely be observed in every case [ [] ]% 'names' - a cell array of strings to be associated with nodes 1:n [{}]% This creates an associative array, so you write e.g.% 'evidence(bnet.names{'bar'}) = 42' instead of 'evidence(2} = 42' % assuming names = { 'foo', 'bar', ...}.%% e.g., bnet = mk_bnet(dag, ns, 'discrete', [1 3])%% For backwards compatibility with BNT2, you can also specify the parameters in the following order% bnet = mk_bnet(dag, node_sizes, discrete_nodes, equiv_class)n = length(dag);% default values for parametersbnet.equiv_class = 1:n;bnet.dnodes = 1:n; % discrete bnet.observed = [];bnet.names = {};if nargin >= 3 args = varargin; nargs = length(args); if ~isstr(args{1}) if nargs >= 1, bnet.dnodes = args{1}; end if nargs >= 2, bnet.equiv_class = args{2}; end else for i=1:2:nargs switch args{i}, case 'equiv_class', bnet.equiv_class = args{i+1}; case 'discrete', bnet.dnodes = args{i+1}; case 'observed', bnet.observed = args{i+1}; case 'names', bnet.names = assocarray(args{i+1}, num2cell(1:n)); otherwise, error(['invalid argument name ' args{i}]); end end endendbnet.observed = sort(bnet.observed); % for comparing setsbnet.hidden = mysetdiff(1:n, bnet.observed(:)');bnet.hidden_bitv = zeros(1,n);bnet.hidden_bitv(bnet.hidden) = 1;bnet.dag = dag;bnet.node_sizes = node_sizes(:)';bnet.cnodes = mysetdiff(1:n, bnet.dnodes);% too many functions refer to cnodes to rename it to cts_nodes - % We hope it won't be confused with chance nodes!bnet.parents = cell(1,n);for i=1:n bnet.parents{i} = parents(dag, i);endE = max(bnet.equiv_class);mem = cell(1,E);for i=1:n e = bnet.equiv_class(i); mem{e} = [mem{e} i];endbnet.members_of_equiv_class = mem;bnet.CPD = cell(1, E);bnet.rep_of_eclass = zeros(1,E);for e=1:E mems = bnet.members_of_equiv_class{e}; bnet.rep_of_eclass(e) = mems(1);enddirected = 1;if ~acyclic(dag,directed) error('graph must be acyclic')endbnet.order = topological_sort(bnet.dag);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -