📄 common_fxc.h
字号:
#include "common_hlsl_cpp_consts.h"
#ifdef NV3X
# define HALF half
# define HALF2 half2
# define HALF3 half3
# define HALF4 half4
# define HALF3x3 half3x3
# define HALF3x4 half3x4
# define HALF4x3 half4x3
# define HALF_CONSTANT( _constant ) ((HALF)_constant)
#else
# define HALF float
# define HALF2 float2
# define HALF3 float3
# define HALF4 float4
# define HALF3x3 float3x3
# define HALF3x4 float3x4
# define HALF4x3 float4x3
# define HALF_CONSTANT( _constant ) _constant
#endif
// This is where all common code for both vertex and pixel shaders.
#define OO_SQRT_3 0.57735025882720947f
static const HALF3 bumpBasis[3] = {
HALF3( 0.81649661064147949f, 0.0f, OO_SQRT_3 ),
HALF3( -0.40824833512306213f, 0.70710676908493042f, OO_SQRT_3 ),
HALF3( -0.40824821591377258f, -0.7071068286895752f, OO_SQRT_3 )
};
static const HALF3 bumpBasisTranspose[3] = {
HALF3( 0.81649661064147949f, -0.40824833512306213f, -0.40824833512306213f ),
HALF3( 0.0f, 0.70710676908493042f, -0.7071068286895752f ),
HALF3( OO_SQRT_3, OO_SQRT_3, OO_SQRT_3 )
};
HALF3 CalcReflectionVectorNormalized( HALF3 normal, HALF3 eyeVector )
{
// FIXME: might be better of normalizing with a normalizing cube map and
// get rid of the dot( normal, normal )
// compute reflection vector r = 2 * ((n dot v)/(n dot n)) n - v
return 2.0 * ( dot( normal, eyeVector ) / dot( normal, normal ) ) * normal - eyeVector;
}
HALF3 CalcReflectionVectorUnnormalized( HALF3 normal, HALF3 eyeVector )
{
// FIXME: might be better of normalizing with a normalizing cube map and
// get rid of the dot( normal, normal )
// compute reflection vector r = 2 * ((n dot v)/(n dot n)) n - v
// multiply all values through by N.N. uniformly scaling reflection vector won't affect result
// since it is used in a cubemap lookup
return (2.0*(dot( normal, eyeVector ))*normal) - (dot( normal, normal )*eyeVector);
}
float3 HuePreservingColorClamp( float3 c )
{
// Get the max of all of the color components and a specified maximum amount
float maximum = max( max( c.x, c.y ), max( c.z, 1.0f ) );
return (c / maximum);
}
#if (AA_CLAMP==1)
HALF2 ComputeLightmapCoordinates( HALF4 Lightmap1and2Coord, HALF2 Lightmap3Coord )
{
HALF2 result = saturate(Lightmap1and2Coord.xy) * Lightmap1and2Coord.wz * 0.99;
result += Lightmap3Coord;
return result;
}
void ComputeBumpedLightmapCoordinates( HALF4 Lightmap1and2Coord, HALF2 Lightmap3Coord,
out HALF2 bumpCoord1,
out HALF2 bumpCoord2,
out HALF2 bumpCoord3 )
{
HALF2 result = saturate(Lightmap1and2Coord.xy) * Lightmap1and2Coord.wz * 0.99;
result += Lightmap3Coord;
bumpCoord1 = result + HALF2(Lightmap1and2Coord.z, 0);
bumpCoord2 = result + 2*HALF2(Lightmap1and2Coord.z, 0);
bumpCoord3 = result + 3*HALF2(Lightmap1and2Coord.z, 0);
}
#else
HALF2 ComputeLightmapCoordinates( HALF4 Lightmap1and2Coord, HALF2 Lightmap3Coord )
{
return Lightmap1and2Coord.xy;
}
void ComputeBumpedLightmapCoordinates( HALF4 Lightmap1and2Coord, HALF2 Lightmap3Coord,
out HALF2 bumpCoord1,
out HALF2 bumpCoord2,
out HALF2 bumpCoord3 )
{
bumpCoord1 = Lightmap1and2Coord.xy;
bumpCoord2 = Lightmap1and2Coord.wz; // reversed order!!!
bumpCoord3 = Lightmap3Coord.xy;
}
#endif
// Versions of matrix multiply functions which force HLSL compiler to explictly use DOTs,
// not giving it the option of using MAD expansion. In a perfect world, the compiler would
// always pick the best strategy, and these shouldn't be needed.. but.. well.. umm..
//
// lorenmcq
float3 mul3x3(float3 v, float3x3 m)
{
return float3(dot(v, transpose(m)[0]), dot(v, transpose(m)[1]), dot(v, transpose(m)[2]));
}
float3 mul4x3(float4 v, float4x3 m)
{
return float3(dot(v, transpose(m)[0]), dot(v, transpose(m)[1]), dot(v, transpose(m)[2]));
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -