⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 odesolve.cpp

📁 hl2 source code. Do not use it illegal.
💻 CPP
字号:
/*
    Dynamics/Kinematics modeling and simulation library.
    Copyright (C) 1999 by Michael Alexander Ewert

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Library General Public
    License as published by the Free Software Foundation; either
    version 2 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Library General Public License for more details.

    You should have received a copy of the GNU Library General Public
    License along with this library; if not, write to the Free
    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/
#include <hk_math/vecmath.h>
#include <hk_math/odesolve.h>


static const hk_real ONE_OVER_SIX = 1.0f/6.0f;
static const hk_real ONE_OVER_THREE = 1.0f/3.0f;

OdeSolver::OdeSolver()
{
  state_size = 0;

  dy = HK_NULL;
  Iy = HK_NULL;
}


// clean up
OdeSolver::~OdeSolver()
{
  if (dy) delete [] dy;
  if (Iy) delete [] Iy;

}


// reallocate memory for all work variables
void OdeSolver::ode_realloc(int new_size)
{
  if (dy) delete [] dy;
  if (Iy) delete [] Iy;

  state_size = new_size;

  dy = new hk_real[state_size];
  Iy = new hk_real[state_size];
  assert(dy);
  assert(Iy);
}


//*****************************
//*   Runga-Kutta
//*****************************

OdeRungaKutta4::OdeRungaKutta4()
{
  k1 = HK_NULL;
  k2 = HK_NULL;
  k3 = HK_NULL;
  k4 = HK_NULL;

  ode_realloc(ODE_INITIAL_STATE_SIZE);
}

// clean up
OdeRungaKutta4::~OdeRungaKutta4() 
{
  if (k1) delete [] k1;
  if (k2) delete [] k2;
  if (k3) delete [] k3;
  if (k4) delete [] k4;
}

// compute a step.  current state in t0, state after time step t0 -> t1 is put in y1
// fourth order runga-kutta
void OdeRungaKutta4::calc_step(hk_real y0[], hk_real y1[], unsigned int len, hk_real t0, hk_real t1, dydt_function dydt, void *client_data )
{
  unsigned int i;
  // reallocate if necessary
  if (len > state_size)
    ode_realloc(len);

  hk_real h = t1 - t0;
  hk_real h_2 = h * 0.5f;

  dydt(t0, y0, dy, client_data );
  for (i = 0; i < len; i++) {    // first iteration
    k1[i] = h*dy[i];
  }

  for (i = 0; i < len; i++) {
    Iy[i] = y0[i] + k1[i] * 0.5f;
  }

  dydt(t0 + h_2, Iy, dy, client_data);
  for (i = 0; i < len; i++) {    // second iteration
    k2[i] = h*dy[i];
  }

  for (i = 0; i < len; i++) {
    Iy[i] = y0[i] + k2[i] * 0.5f;
  }

  dydt(t0 + h_2, Iy, dy, client_data );
  for (i = 0; i < len; i++) {    // third iteration
    k3[i] = h*dy[i];
  }

  for (i = 0; i < len; i++) {
    Iy[i] = y0[i] + k3[i];
  }

  dydt(t0 + h, Iy, dy, client_data );
  for (i = 0; i < len; i++) {    // fourth iteration
    k4[i] = h*dy[i];
  }

  for (i = 0; i < len; i++) {
    y1[i] = y0[i] + (k1[i] * ONE_OVER_SIX) + (k2[i] * ONE_OVER_THREE)
                    + (k3[i] * ONE_OVER_THREE) + (k4[i] * ONE_OVER_SIX);
  }
}

// reallocate memory for all work variables
void OdeRungaKutta4::ode_realloc(int new_size)
{
  OdeSolver::ode_realloc( new_size );
  if (k1)   delete [] k1;
  if (k2)   delete [] k2;
  if (k3)   delete [] k3;
  if (k4)   delete [] k4;

  state_size = new_size;

  k1 = new hk_real[state_size];
  k2 = new hk_real[state_size];
  k3 = new hk_real[state_size];
  k4 = new hk_real[state_size];
  assert(k1); assert(k2); assert(k3); assert(k4);
}


// euler integration.  Real dumb. Real fast.
OdeEuler::OdeEuler()
{
  ode_realloc(ODE_INITIAL_STATE_SIZE);
}

void OdeEuler::calc_step(hk_real y0[], hk_real y1[], unsigned int len, hk_real t0, hk_real t1, dydt_function dydt, void *client_data)
{
  unsigned int i;
  // reallocate if necessary
  if (len > state_size)
    ode_realloc(len);

  hk_real h = t1 - t0;

  dydt(t0, y0, dy, client_data );
 
  for (i = 0; i < len; i++) {
    y1[i] = y0[i] + dy[i] * h;
  }
}

// mid-point

// mid-point integration.  Not so dumb. pretty fast.
OdeMidPoint::OdeMidPoint()
{
  ode_realloc(ODE_INITIAL_STATE_SIZE);
}

// k1 = f( t, x )  : eval F and T at (t, x)
// k2 = f( t + dt/2, x + dt/2*k1 ) 
//    x + dt/2*k1 -> take step of size dt/2 from x. AddRB( k2, k1, dt/2,  
//      f()         -> eval F and T at stepped ( t + dt/2, x + dt/2*k1 ) postion  
// y' = y + dt*k2   -> take step of size dt from x
void OdeMidPoint::calc_step(hk_real y0[], hk_real y1[], unsigned int len, hk_real t0, hk_real t1, dydt_function dydt, void *client_data)
{
  unsigned int i;
  // reallocate if necessary
  if (len > state_size)
    ode_realloc(len);

  hk_real h = (t1 - t0) * 0.5f;

  dydt(t0, y0, dy, client_data );
  for (i = 0; i < len; i++) {    // first iteration
    Iy[i] = y0[i] + dy[i] * h;
  }
  dydt(t0 + h, Iy, dy, client_data );
  
  h *= 2.0f;
  for (i = 0; i < len; i++) {
    y1[i] = y0[i] + dy[i] * h;
  }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -