⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jpakedemo.c

📁 OpenSSL 0.9.8k 最新版OpenSSL
💻 C
字号:
#include "openssl/bn.h"#include "openssl/sha.h"#include <assert.h>#include <string.h>#include <stdlib.h>/* Copyright (C) 2008 Ben Laurie (ben@links.org) *//* * Implement J-PAKE, as described in * http://grouper.ieee.org/groups/1363/Research/contributions/hao-ryan-2008.pdf *  * With hints from http://www.cl.cam.ac.uk/~fh240/software/JPAKE2.java. */static void showbn(const char *name, const BIGNUM *bn)    {    fputs(name, stdout);    fputs(" = ", stdout);    BN_print_fp(stdout, bn);    putc('\n', stdout);    }typedef struct    {    BN_CTX *ctx;  // Perhaps not the best place for this?    BIGNUM *p;    BIGNUM *q;    BIGNUM *g;    } JPakeParameters;static void JPakeParametersInit(JPakeParameters *params)    {    params->ctx = BN_CTX_new();    // For now use p, q, g from Java sample code. Later, generate them.    params->p = NULL;    BN_hex2bn(&params->p, "fd7f53811d75122952df4a9c2eece4e7f611b7523cef4400c31e3f80b6512669455d402251fb593d8d58fabfc5f5ba30f6cb9b556cd7813b801d346ff26660b76b9950a5a49f9fe8047b1022c24fbba9d7feb7c61bf83b57e7c6a8a6150f04fb83f6d3c51ec3023554135a169132f675f3ae2b61d72aeff22203199dd14801c7");    params->q = NULL;    BN_hex2bn(&params->q, "9760508f15230bccb292b982a2eb840bf0581cf5");    params->g = NULL;    BN_hex2bn(&params->g, "f7e1a085d69b3ddecbbcab5c36b857b97994afbbfa3aea82f9574c0b3d0782675159578ebad4594fe67107108180b449167123e84c281613b7cf09328cc8a6e13c167a8b547c8d28e0a3ae1e2bb3a675916ea37f0bfa213562f1fb627a01243bcca4f1bea8519089a883dfe15ae59f06928b665e807b552564014c3bfecf492a");    showbn("p", params->p);    showbn("q", params->q);    showbn("g", params->g);    }typedef struct    {    BIGNUM *gr;  // g^r (r random)    BIGNUM *b;   // b = r - x*h, h=hash(g, g^r, g^x, name)    } JPakeZKP;typedef struct    {    BIGNUM *gx;       // g^x    JPakeZKP zkpx;    // ZKP(x)    } JPakeStep1;typedef struct    {    BIGNUM *X;        // g^(xa + xc + xd) * xb * s    JPakeZKP zkpxbs;  // ZKP(xb * s)    } JPakeStep2;typedef struct    {    const char *name;  // Must be unique    int base;          // 1 for Alice, 3 for Bob. Only used for printing stuff.    JPakeStep1 s1c;    // Alice's g^x3, ZKP(x3) or Bob's g^x1, ZKP(x1)    JPakeStep1 s1d;    // Alice's g^x4, ZKP(x4) or Bob's g^x2, ZKP(x2)    JPakeStep2 s2;     // Alice's A, ZKP(x2 * s) or Bob's B, ZKP(x4 * s)    } JPakeUserPublic;/* * The user structure. In the definition, (xa, xb, xc, xd) are Alice's * (x1, x2, x3, x4) or Bob's (x3, x4, x1, x2). If you see what I mean. */typedef struct    {    JPakeUserPublic p;    BIGNUM *secret;    // The shared secret    BIGNUM *key;       // The calculated (shared) key    BIGNUM *xa;        // Alice's x1 or Bob's x3    BIGNUM *xb;        // Alice's x2 or Bob's x4    } JPakeUser;// Generate each party's random numbers. xa is in [0, q), xb is in [1, q).static void genrand(JPakeUser *user, const JPakeParameters *params)    {    BIGNUM *qm1;    // xa in [0, q)    user->xa = BN_new();    BN_rand_range(user->xa, params->q);    // q-1    qm1 = BN_new();    BN_copy(qm1, params->q);    BN_sub_word(qm1, 1);    // ... and xb in [0, q-1)    user->xb = BN_new();    BN_rand_range(user->xb, qm1);    // [1, q)    BN_add_word(user->xb, 1);    // cleanup    BN_free(qm1);    // Show    printf("x%d", user->p.base);    showbn("", user->xa);    printf("x%d", user->p.base+1);    showbn("", user->xb);    }static void hashlength(SHA_CTX *sha, size_t l)    {    unsigned char b[2];    assert(l <= 0xffff);    b[0] = l >> 8;    b[1] = l&0xff;    SHA1_Update(sha, b, 2);    }static void hashstring(SHA_CTX *sha, const char *string)    {    size_t l = strlen(string);    hashlength(sha, l);    SHA1_Update(sha, string, l);    }static void hashbn(SHA_CTX *sha, const BIGNUM *bn)    {    size_t l = BN_num_bytes(bn);    unsigned char *bin = alloca(l);    hashlength(sha, l);    BN_bn2bin(bn, bin);    SHA1_Update(sha, bin, l);    }// h=hash(g, g^r, g^x, name)static void zkpHash(BIGNUM *h, const JPakeZKP *zkp, const BIGNUM *gx,		    const JPakeUserPublic *from, const JPakeParameters *params)    {    unsigned char md[SHA_DIGEST_LENGTH];    SHA_CTX sha;    // XXX: hash should not allow moving of the boundaries - Java code    // is flawed in this respect. Length encoding seems simplest.    SHA1_Init(&sha);    hashbn(&sha, params->g);    hashbn(&sha, zkp->gr);    hashbn(&sha, gx);    hashstring(&sha, from->name);    SHA1_Final(md, &sha);    BN_bin2bn(md, SHA_DIGEST_LENGTH, h);    }// Prove knowledge of x// Note that we don't send g^x because, as it happens, we've always// sent it elsewhere. Also note that because of that, we could avoid// calculating it here, but we don't, for clarity...static void CreateZKP(JPakeZKP *zkp, const BIGNUM *x, const JPakeUser *us,		      const BIGNUM *zkpg, const JPakeParameters *params,		      int n, const char *suffix)    {    BIGNUM *r = BN_new();    BIGNUM *gx = BN_new();    BIGNUM *h = BN_new();    BIGNUM *t = BN_new();    // r in [0,q)    // XXX: Java chooses r in [0, 2^160) - i.e. distribution not uniform    BN_rand_range(r, params->q);    // g^r    zkp->gr = BN_new();    BN_mod_exp(zkp->gr, zkpg, r, params->p, params->ctx);    // g^x    BN_mod_exp(gx, zkpg, x, params->p, params->ctx);    // h=hash...    zkpHash(h, zkp, gx, &us->p, params);        // b = r - x*h    BN_mod_mul(t, x, h, params->q, params->ctx);    zkp->b = BN_new();    BN_mod_sub(zkp->b, r, t, params->q, params->ctx);    // show    printf("  ZKP(x%d%s)\n", n, suffix);    showbn("   zkpg", zkpg);    showbn("    g^x", gx);    showbn("    g^r", zkp->gr);    showbn("      b", zkp->b);    // cleanup    BN_free(t);    BN_free(h);    BN_free(gx);    BN_free(r);    }static int VerifyZKP(const JPakeZKP *zkp, BIGNUM *gx,		     const JPakeUserPublic *them, const BIGNUM *zkpg,		     const JPakeParameters *params, int n, const char *suffix)    {    BIGNUM *h = BN_new();    BIGNUM *t1 = BN_new();    BIGNUM *t2 = BN_new();    BIGNUM *t3 = BN_new();    int ret = 0;    zkpHash(h, zkp, gx, them, params);    // t1 = g^b    BN_mod_exp(t1, zkpg, zkp->b, params->p, params->ctx);    // t2 = (g^x)^h = g^{hx}    BN_mod_exp(t2, gx, h, params->p, params->ctx);    // t3 = t1 * t2 = g^{hx} * g^b = g^{hx+b} = g^r (allegedly)    BN_mod_mul(t3, t1, t2, params->p, params->ctx);    printf("  ZKP(x%d%s)\n", n, suffix);    showbn("    zkpg", zkpg);    showbn("    g^r'", t3);    // verify t3 == g^r    if(BN_cmp(t3, zkp->gr) == 0)	ret = 1;    // cleanup    BN_free(t3);    BN_free(t2);    BN_free(t1);    BN_free(h);    if(ret)	puts("    OK");    else	puts("    FAIL");    return ret;    }    static void sendstep1_substep(JPakeStep1 *s1, const BIGNUM *x,			      const JPakeUser *us,			      const JPakeParameters *params, int n)    {    s1->gx = BN_new();    BN_mod_exp(s1->gx, params->g, x, params->p, params->ctx);    printf("  g^{x%d}", n);    showbn("", s1->gx);    CreateZKP(&s1->zkpx, x, us, params->g, params, n, "");    }static void sendstep1(const JPakeUser *us, JPakeUserPublic *them,		      const JPakeParameters *params)    {    printf("\n%s sends %s:\n\n", us->p.name, them->name);    // from's g^xa (which becomes to's g^xc) and ZKP(xa)    sendstep1_substep(&them->s1c, us->xa, us, params, us->p.base);    // from's g^xb (which becomes to's g^xd) and ZKP(xb)    sendstep1_substep(&them->s1d, us->xb, us, params, us->p.base+1);    }static int verifystep1(const JPakeUser *us, const JPakeUserPublic *them,		       const JPakeParameters *params)    {    printf("\n%s verifies %s:\n\n", us->p.name, them->name);    // verify their ZKP(xc)    if(!VerifyZKP(&us->p.s1c.zkpx, us->p.s1c.gx, them, params->g, params,		  them->base, ""))	return 0;    // verify their ZKP(xd)    if(!VerifyZKP(&us->p.s1d.zkpx, us->p.s1d.gx, them, params->g, params,		  them->base+1, ""))	return 0;    // g^xd != 1    printf("  g^{x%d} != 1: ", them->base+1);    if(BN_is_one(us->p.s1d.gx))	{	puts("FAIL");	return 0;	}    puts("OK");    return 1;    }static void sendstep2(const JPakeUser *us, JPakeUserPublic *them,		      const JPakeParameters *params)    {    BIGNUM *t1 = BN_new();    BIGNUM *t2 = BN_new();    printf("\n%s sends %s:\n\n", us->p.name, them->name);    // X = g^{(xa + xc + xd) * xb * s}    // t1 = g^xa    BN_mod_exp(t1, params->g, us->xa, params->p, params->ctx);    // t2 = t1 * g^{xc} = g^{xa} * g^{xc} = g^{xa + xc}    BN_mod_mul(t2, t1, us->p.s1c.gx, params->p, params->ctx);    // t1 = t2 * g^{xd} = g^{xa + xc + xd}    BN_mod_mul(t1, t2, us->p.s1d.gx, params->p, params->ctx);    // t2 = xb * s    BN_mod_mul(t2, us->xb, us->secret, params->q, params->ctx);    // X = t1^{t2} = t1^{xb * s} = g^{(xa + xc + xd) * xb * s}    them->s2.X = BN_new();    BN_mod_exp(them->s2.X, t1, t2, params->p, params->ctx);    // Show    printf("  g^{(x%d + x%d + x%d) * x%d * s)", us->p.base, them->base,	   them->base+1, us->p.base+1);    showbn("", them->s2.X);    // ZKP(xb * s)    // XXX: this is kinda funky, because we're using    //    // g' = g^{xa + xc + xd}    //    // as the generator, which means X is g'^{xb * s}    CreateZKP(&them->s2.zkpxbs, t2, us, t1, params, us->p.base+1, " * s");    // cleanup    BN_free(t1);    BN_free(t2);    }static int verifystep2(const JPakeUser *us, const JPakeUserPublic *them,		       const JPakeParameters *params)    {    BIGNUM *t1 = BN_new();    BIGNUM *t2 = BN_new();    int ret = 0;    printf("\n%s verifies %s:\n\n", us->p.name, them->name);    // g' = g^{xc + xa + xb} [from our POV]    // t1 = xa + xb    BN_mod_add(t1, us->xa, us->xb, params->q, params->ctx);    // t2 = g^{t1} = g^{xa+xb}    BN_mod_exp(t2, params->g, t1, params->p, params->ctx);    // t1 = g^{xc} * t2 = g^{xc + xa + xb}    BN_mod_mul(t1, us->p.s1c.gx, t2, params->p, params->ctx);    if(VerifyZKP(&us->p.s2.zkpxbs, us->p.s2.X, them, t1, params, them->base+1,		  " * s"))	ret = 1;    // cleanup    BN_free(t2);    BN_free(t1);    return ret;    }static void computekey(JPakeUser *us, const JPakeParameters *params)    {    BIGNUM *t1 = BN_new();    BIGNUM *t2 = BN_new();    BIGNUM *t3 = BN_new();    printf("\n%s calculates the shared key:\n\n", us->p.name);    // K = (X/g^{xb * xd * s})^{xb}    //   = (g^{(xc + xa + xb) * xd * s - xb * xd *s})^{xb}    //   = (g^{(xa + xc) * xd * s})^{xb}    //   = g^{(xa + xc) * xb * xd * s}    // [which is the same regardless of who calculates it]    // t1 = (g^{xd})^{xb} = g^{xb * xd}    BN_mod_exp(t1, us->p.s1d.gx, us->xb, params->p, params->ctx);    // t2 = -s = q-s    BN_sub(t2, params->q, us->secret);    // t3 = t1^t2 = g^{-xb * xd * s}    BN_mod_exp(t3, t1, t2, params->p, params->ctx);    // t1 = X * t3 = X/g^{xb * xd * s}    BN_mod_mul(t1, us->p.s2.X, t3, params->p, params->ctx);    // K = t1^{xb}    us->key = BN_new();    BN_mod_exp(us->key, t1, us->xb, params->p, params->ctx);    // show    showbn("  K", us->key);    // cleanup    BN_free(t3);    BN_free(t2);    BN_free(t1);    }int main(int argc, char **argv)    {    JPakeParameters params;    JPakeUser alice, bob;    alice.p.name = "Alice";    alice.p.base = 1;    bob.p.name = "Bob";    bob.p.base = 3;    JPakeParametersInit(&params);    // Shared secret    alice.secret = BN_new();    BN_rand(alice.secret, 32, -1, 0);    bob.secret = alice.secret;    showbn("secret", alice.secret);    assert(BN_cmp(alice.secret, params.q) < 0);    // Alice's x1, x2    genrand(&alice, &params);    // Bob's x3, x4    genrand(&bob, &params);    // Now send stuff to each other...    sendstep1(&alice, &bob.p, &params);    sendstep1(&bob, &alice.p, &params);    // And verify what each other sent    if(!verifystep1(&alice, &bob.p, &params))	return 1;    if(!verifystep1(&bob, &alice.p, &params))	return 2;    // Second send    sendstep2(&alice, &bob.p, &params);    sendstep2(&bob, &alice.p, &params);    // And second verify    if(!verifystep2(&alice, &bob.p, &params))	return 3;    if(!verifystep2(&bob, &alice.p, &params))	return 4;    // Compute common key    computekey(&alice, &params);    computekey(&bob, &params);    // Confirm the common key is identical    // XXX: if the two secrets are not the same, everything works up    // to this point, so the only way to detect a failure is by the    // difference in the calculated keys.    // Since we're all the same code, just compare them directly. In a    // real system, Alice sends Bob H(H(K)), Bob checks it, then sends    // back H(K), which Alice checks, or something equivalent.    puts("\nAlice and Bob check keys are the same:");    if(BN_cmp(alice.key, bob.key) == 0)	puts("  OK");    else	{	puts("  FAIL");	return 5;	}    return 0;    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -