📄 ec2_smpl.c
字号:
if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; buf[0] = form;#ifdef OPENSSL_EC_BIN_PT_COMP if ((form != POINT_CONVERSION_UNCOMPRESSED) && !BN_is_zero(x)) { if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err; if (BN_is_odd(yxi)) buf[0]++; }#endif i = 1; skip = field_len - BN_num_bytes(x); if (skip > field_len) { ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); goto err; } while (skip > 0) { buf[i++] = 0; skip--; } skip = BN_bn2bin(x, buf + i); i += skip; if (i != 1 + field_len) { ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); goto err; } if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID) { skip = field_len - BN_num_bytes(y); if (skip > field_len) { ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); goto err; } while (skip > 0) { buf[i++] = 0; skip--; } skip = BN_bn2bin(y, buf + i); i += skip; } if (i != ret) { ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); goto err; } } if (used_ctx) BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; err: if (used_ctx) BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return 0; }/* Converts an octet string representation to an EC_POINT. * Note that the simple implementation only uses affine coordinates. */int ec_GF2m_simple_oct2point(const EC_GROUP *group, EC_POINT *point, const unsigned char *buf, size_t len, BN_CTX *ctx) { point_conversion_form_t form; int y_bit; BN_CTX *new_ctx = NULL; BIGNUM *x, *y, *yxi; size_t field_len, enc_len; int ret = 0; if (len == 0) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL); return 0; } form = buf[0]; y_bit = form & 1; form = form & ~1U; if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED) && (form != POINT_CONVERSION_UNCOMPRESSED) && (form != POINT_CONVERSION_HYBRID)) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); return 0; } if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); return 0; } if (form == 0) { if (len != 1) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); return 0; } return EC_POINT_set_to_infinity(group, point); } field_len = (EC_GROUP_get_degree(group) + 7) / 8; enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len; if (len != enc_len) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); return 0; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); yxi = BN_CTX_get(ctx); if (yxi == NULL) goto err; if (!BN_bin2bn(buf + 1, field_len, x)) goto err; if (BN_ucmp(x, &group->field) >= 0) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); goto err; } if (form == POINT_CONVERSION_COMPRESSED) { if (!EC_POINT_set_compressed_coordinates_GF2m(group, point, x, y_bit, ctx)) goto err; } else { if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) goto err; if (BN_ucmp(y, &group->field) >= 0) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); goto err; } if (form == POINT_CONVERSION_HYBRID) { if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err; if (y_bit != BN_is_odd(yxi)) { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); goto err; } } if (!EC_POINT_set_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; } if (!EC_POINT_is_on_curve(group, point, ctx)) /* test required by X9.62 */ { ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_POINT_IS_NOT_ON_CURVE); goto err; } ret = 1; err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; }/* Computes a + b and stores the result in r. r could be a or b, a could be b. * Uses algorithm A.10.2 of IEEE P1363. */int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; int ret = 0; if (EC_POINT_is_at_infinity(group, a)) { if (!EC_POINT_copy(r, b)) return 0; return 1; } if (EC_POINT_is_at_infinity(group, b)) { if (!EC_POINT_copy(r, a)) return 0; return 1; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); x0 = BN_CTX_get(ctx); y0 = BN_CTX_get(ctx); x1 = BN_CTX_get(ctx); y1 = BN_CTX_get(ctx); x2 = BN_CTX_get(ctx); y2 = BN_CTX_get(ctx); s = BN_CTX_get(ctx); t = BN_CTX_get(ctx); if (t == NULL) goto err; if (a->Z_is_one) { if (!BN_copy(x0, &a->X)) goto err; if (!BN_copy(y0, &a->Y)) goto err; } else { if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err; } if (b->Z_is_one) { if (!BN_copy(x1, &b->X)) goto err; if (!BN_copy(y1, &b->Y)) goto err; } else { if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err; } if (BN_GF2m_cmp(x0, x1)) { if (!BN_GF2m_add(t, x0, x1)) goto err; if (!BN_GF2m_add(s, y0, y1)) goto err; if (!group->meth->field_div(group, s, s, t, ctx)) goto err; if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; if (!BN_GF2m_add(x2, x2, &group->a)) goto err; if (!BN_GF2m_add(x2, x2, s)) goto err; if (!BN_GF2m_add(x2, x2, t)) goto err; } else { if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) { if (!EC_POINT_set_to_infinity(group, r)) goto err; ret = 1; goto err; } if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err; if (!BN_GF2m_add(s, s, x1)) goto err; if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; if (!BN_GF2m_add(x2, x2, s)) goto err; if (!BN_GF2m_add(x2, x2, &group->a)) goto err; } if (!BN_GF2m_add(y2, x1, x2)) goto err; if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err; if (!BN_GF2m_add(y2, y2, x2)) goto err; if (!BN_GF2m_add(y2, y2, y1)) goto err; if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; }/* Computes 2 * a and stores the result in r. r could be a. * Uses algorithm A.10.2 of IEEE P1363. */int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) { return ec_GF2m_simple_add(group, r, a, a, ctx); }int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) { if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) /* point is its own inverse */ return 1; if (!EC_POINT_make_affine(group, point, ctx)) return 0; return BN_GF2m_add(&point->Y, &point->X, &point->Y); }/* Indicates whether the given point is the point at infinity. */int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { return BN_is_zero(&point->Z); }/* Determines whether the given EC_POINT is an actual point on the curve defined * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: * y^2 + x*y = x^3 + a*x^2 + b. */int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) { int ret = -1; BN_CTX *new_ctx = NULL; BIGNUM *lh, *y2; int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); if (EC_POINT_is_at_infinity(group, point)) return 1; field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; /* only support affine coordinates */ if (!point->Z_is_one) goto err; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return -1; } BN_CTX_start(ctx); y2 = BN_CTX_get(ctx); lh = BN_CTX_get(ctx); if (lh == NULL) goto err; /* We have a curve defined by a Weierstrass equation * y^2 + x*y = x^3 + a*x^2 + b. * <=> x^3 + a*x^2 + x*y + b + y^2 = 0 * <=> ((x + a) * x + y ) * x + b + y^2 = 0 */ if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err; if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; if (!BN_GF2m_add(lh, lh, &point->Y)) goto err; if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; if (!BN_GF2m_add(lh, lh, &group->b)) goto err; if (!field_sqr(group, y2, &point->Y, ctx)) goto err; if (!BN_GF2m_add(lh, lh, y2)) goto err; ret = BN_is_zero(lh); err: if (ctx) BN_CTX_end(ctx); if (new_ctx) BN_CTX_free(new_ctx); return ret; }/* Indicates whether two points are equal. * Return values: * -1 error * 0 equal (in affine coordinates) * 1 not equal */int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { BIGNUM *aX, *aY, *bX, *bY; BN_CTX *new_ctx = NULL; int ret = -1; if (EC_POINT_is_at_infinity(group, a)) { return EC_POINT_is_at_infinity(group, b) ? 0 : 1; } if (a->Z_is_one && b->Z_is_one) { return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return -1; } BN_CTX_start(ctx); aX = BN_CTX_get(ctx); aY = BN_CTX_get(ctx); bX = BN_CTX_get(ctx); bY = BN_CTX_get(ctx); if (bY == NULL) goto err; if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err; if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err; ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; err: if (ctx) BN_CTX_end(ctx); if (new_ctx) BN_CTX_free(new_ctx); return ret; }/* Forces the given EC_POINT to internally use affine coordinates. */int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *x, *y; int ret = 0; if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) return 1; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) goto err; if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; if (!BN_copy(&point->X, x)) goto err; if (!BN_copy(&point->Y, y)) goto err; if (!BN_one(&point->Z)) goto err; ret = 1; err: if (ctx) BN_CTX_end(ctx); if (new_ctx) BN_CTX_free(new_ctx); return ret; }/* Forces each of the EC_POINTs in the given array to use affine coordinates. */int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) { size_t i; for (i = 0; i < num; i++) { if (!group->meth->make_affine(group, points[i], ctx)) return 0; } return 1; }/* Wrapper to simple binary polynomial field multiplication implementation. */int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); }/* Wrapper to simple binary polynomial field squaring implementation. */int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); }/* Wrapper to simple binary polynomial field division implementation. */int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return BN_GF2m_mod_div(r, a, b, &group->field, ctx); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -