📄 ecp_smpl.c
字号:
if (!field_mul(group, n1, n2, n5, ctx)) goto end; if (!BN_mod_sub_quick(n0, n0, n1, p)) goto end; if (BN_is_odd(n0)) if (!BN_add(n0, n0, p)) goto end; /* now 0 <= n0 < 2*p, and n0 is even */ if (!BN_rshift1(&r->Y, n0)) goto end; /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ ret = 1; end: if (ctx) /* otherwise we already called BN_CTX_end */ BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; }int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) { int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *n0, *n1, *n2, *n3; int ret = 0; if (EC_POINT_is_at_infinity(group, a)) { BN_zero(&r->Z); r->Z_is_one = 0; return 1; } field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = &group->field; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); n0 = BN_CTX_get(ctx); n1 = BN_CTX_get(ctx); n2 = BN_CTX_get(ctx); n3 = BN_CTX_get(ctx); if (n3 == NULL) goto err; /* Note that in this function we must not read components of 'a' * once we have written the corresponding components of 'r'. * ('r' might the same as 'a'.) */ /* n1 */ if (a->Z_is_one) { if (!field_sqr(group, n0, &a->X, ctx)) goto err; if (!BN_mod_lshift1_quick(n1, n0, p)) goto err; if (!BN_mod_add_quick(n0, n0, n1, p)) goto err; if (!BN_mod_add_quick(n1, n0, &group->a, p)) goto err; /* n1 = 3 * X_a^2 + a_curve */ } else if (group->a_is_minus3) { if (!field_sqr(group, n1, &a->Z, ctx)) goto err; if (!BN_mod_add_quick(n0, &a->X, n1, p)) goto err; if (!BN_mod_sub_quick(n2, &a->X, n1, p)) goto err; if (!field_mul(group, n1, n0, n2, ctx)) goto err; if (!BN_mod_lshift1_quick(n0, n1, p)) goto err; if (!BN_mod_add_quick(n1, n0, n1, p)) goto err; /* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) * = 3 * X_a^2 - 3 * Z_a^4 */ } else { if (!field_sqr(group, n0, &a->X, ctx)) goto err; if (!BN_mod_lshift1_quick(n1, n0, p)) goto err; if (!BN_mod_add_quick(n0, n0, n1, p)) goto err; if (!field_sqr(group, n1, &a->Z, ctx)) goto err; if (!field_sqr(group, n1, n1, ctx)) goto err; if (!field_mul(group, n1, n1, &group->a, ctx)) goto err; if (!BN_mod_add_quick(n1, n1, n0, p)) goto err; /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ } /* Z_r */ if (a->Z_is_one) { if (!BN_copy(n0, &a->Y)) goto err; } else { if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) goto err; } if (!BN_mod_lshift1_quick(&r->Z, n0, p)) goto err; r->Z_is_one = 0; /* Z_r = 2 * Y_a * Z_a */ /* n2 */ if (!field_sqr(group, n3, &a->Y, ctx)) goto err; if (!field_mul(group, n2, &a->X, n3, ctx)) goto err; if (!BN_mod_lshift_quick(n2, n2, 2, p)) goto err; /* n2 = 4 * X_a * Y_a^2 */ /* X_r */ if (!BN_mod_lshift1_quick(n0, n2, p)) goto err; if (!field_sqr(group, &r->X, n1, ctx)) goto err; if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) goto err; /* X_r = n1^2 - 2 * n2 */ /* n3 */ if (!field_sqr(group, n0, n3, ctx)) goto err; if (!BN_mod_lshift_quick(n3, n0, 3, p)) goto err; /* n3 = 8 * Y_a^4 */ /* Y_r */ if (!BN_mod_sub_quick(n0, n2, &r->X, p)) goto err; if (!field_mul(group, n0, n1, n0, ctx)) goto err; if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) goto err; /* Y_r = n1 * (n2 - X_r) - n3 */ ret = 1; err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; }int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) { if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) /* point is its own inverse */ return 1; return BN_usub(&point->Y, &group->field, &point->Y); }int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { return BN_is_zero(&point->Z); }int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) { int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); const BIGNUM *p; BN_CTX *new_ctx = NULL; BIGNUM *rh, *tmp, *Z4, *Z6; int ret = -1; if (EC_POINT_is_at_infinity(group, point)) return 1; field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; p = &group->field; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return -1; } BN_CTX_start(ctx); rh = BN_CTX_get(ctx); tmp = BN_CTX_get(ctx); Z4 = BN_CTX_get(ctx); Z6 = BN_CTX_get(ctx); if (Z6 == NULL) goto err; /* We have a curve defined by a Weierstrass equation * y^2 = x^3 + a*x + b. * The point to consider is given in Jacobian projective coordinates * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). * Substituting this and multiplying by Z^6 transforms the above equation into * Y^2 = X^3 + a*X*Z^4 + b*Z^6. * To test this, we add up the right-hand side in 'rh'. */ /* rh := X^2 */ if (!field_sqr(group, rh, &point->X, ctx)) goto err; if (!point->Z_is_one) { if (!field_sqr(group, tmp, &point->Z, ctx)) goto err; if (!field_sqr(group, Z4, tmp, ctx)) goto err; if (!field_mul(group, Z6, Z4, tmp, ctx)) goto err; /* rh := (rh + a*Z^4)*X */ if (group->a_is_minus3) { if (!BN_mod_lshift1_quick(tmp, Z4, p)) goto err; if (!BN_mod_add_quick(tmp, tmp, Z4, p)) goto err; if (!BN_mod_sub_quick(rh, rh, tmp, p)) goto err; if (!field_mul(group, rh, rh, &point->X, ctx)) goto err; } else { if (!field_mul(group, tmp, Z4, &group->a, ctx)) goto err; if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err; if (!field_mul(group, rh, rh, &point->X, ctx)) goto err; } /* rh := rh + b*Z^6 */ if (!field_mul(group, tmp, &group->b, Z6, ctx)) goto err; if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err; } else { /* point->Z_is_one */ /* rh := (rh + a)*X */ if (!BN_mod_add_quick(rh, rh, &group->a, p)) goto err; if (!field_mul(group, rh, rh, &point->X, ctx)) goto err; /* rh := rh + b */ if (!BN_mod_add_quick(rh, rh, &group->b, p)) goto err; } /* 'lh' := Y^2 */ if (!field_sqr(group, tmp, &point->Y, ctx)) goto err; ret = (0 == BN_ucmp(tmp, rh)); err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; }int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { /* return values: * -1 error * 0 equal (in affine coordinates) * 1 not equal */ int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); BN_CTX *new_ctx = NULL; BIGNUM *tmp1, *tmp2, *Za23, *Zb23; const BIGNUM *tmp1_, *tmp2_; int ret = -1; if (EC_POINT_is_at_infinity(group, a)) { return EC_POINT_is_at_infinity(group, b) ? 0 : 1; } if (a->Z_is_one && b->Z_is_one) { return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; } field_mul = group->meth->field_mul; field_sqr = group->meth->field_sqr; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return -1; } BN_CTX_start(ctx); tmp1 = BN_CTX_get(ctx); tmp2 = BN_CTX_get(ctx); Za23 = BN_CTX_get(ctx); Zb23 = BN_CTX_get(ctx); if (Zb23 == NULL) goto end; /* We have to decide whether * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), * or equivalently, whether * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). */ if (!b->Z_is_one) { if (!field_sqr(group, Zb23, &b->Z, ctx)) goto end; if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) goto end; tmp1_ = tmp1; } else tmp1_ = &a->X; if (!a->Z_is_one) { if (!field_sqr(group, Za23, &a->Z, ctx)) goto end; if (!field_mul(group, tmp2, &b->X, Za23, ctx)) goto end; tmp2_ = tmp2; } else tmp2_ = &b->X; /* compare X_a*Z_b^2 with X_b*Z_a^2 */ if (BN_cmp(tmp1_, tmp2_) != 0) { ret = 1; /* points differ */ goto end; } if (!b->Z_is_one) { if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) goto end; if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) goto end; /* tmp1_ = tmp1 */ } else tmp1_ = &a->Y; if (!a->Z_is_one) { if (!field_mul(group, Za23, Za23, &a->Z, ctx)) goto end; if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) goto end; /* tmp2_ = tmp2 */ } else tmp2_ = &b->Y; /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ if (BN_cmp(tmp1_, tmp2_) != 0) { ret = 1; /* points differ */ goto end; } /* points are equal */ ret = 0; end: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; }int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *x, *y; int ret = 0; if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) return 1; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); x = BN_CTX_get(ctx); y = BN_CTX_get(ctx); if (y == NULL) goto err; if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; if (!point->Z_is_one) { ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR); goto err; } ret = 1; err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); return ret; }int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) { BN_CTX *new_ctx = NULL; BIGNUM *tmp0, *tmp1; size_t pow2 = 0; BIGNUM **heap = NULL; size_t i; int ret = 0; if (num == 0) return 1; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); tmp0 = BN_CTX_get(ctx); tmp1 = BN_CTX_get(ctx); if (tmp0 == NULL || tmp1 == NULL) goto err; /* Before converting the individual points, compute inverses of all Z values. * Modular inversion is rather slow, but luckily we can do with a single * explicit inversion, plus about 3 multiplications per input value. */ pow2 = 1; while (num > pow2) pow2 <<= 1; /* Now pow2 is the smallest power of 2 satifsying pow2 >= num. * We need twice that. */ pow2 <<= 1; heap = OPENSSL_malloc(pow2 * sizeof heap[0]); if (heap == NULL) goto err; /* The array is used as a binary tree, exactly as in heapsort: * * heap[1] * heap[2] heap[3] * heap[4] heap[5] heap[6] heap[7] * heap[8]heap[9] heap[10]heap[11] heap[12]heap[13] heap[14] heap[15] * * We put the Z's in the last line; * then we set each other node to the product of its two child-nodes (where * empty or 0 entries are treated as ones); * then we invert heap[1]; * then we invert each other node by replacing it by the product of its * parent (after inversion) and its sibling (before inversion). */ heap[0] = NULL; for (i = pow2/2 - 1; i > 0; i--) heap[i] = NULL; for (i = 0; i < num; i++) heap[pow2/2 + i] = &points[i]->Z; for (i = pow2/2 + num; i < pow2; i++) heap[i] = NULL; /* set each node to the product of its children */ for (i = pow2/2 - 1; i > 0; i--) { heap[i] = BN_new(); if (heap[i] == NULL) goto err; if (heap[2*i] != NULL) { if ((heap[2*i + 1] == NULL) || BN_is_zero(heap[2*i + 1])) { if (!BN_copy(heap[i], heap[2*i])) goto err; } else { if (BN_is_zero(heap[2*i])) { if (!BN_copy(heap[i], heap[2*i + 1])) goto err; } else { if (!group->meth->field_mul(group, heap[i], heap[2*i], heap[2*i + 1], ctx)) goto err; } } } } /* invert heap[1] */ if (!BN_is_zero(heap[1])) { if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx)) { ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB); goto err; } } if (group->meth->field_encode != 0) { /* in the Montgomery case, we just turned R*H (representing H) * into 1/(R*H), but we need R*(1/H) (representing 1/H); * i.e. we have need to multiply by the Montgomery factor twice */ if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err; if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err; } /* set other heap[i]'s to their inverses */ for (i = 2; i < pow2/2 + num; i += 2) { /* i is even */ if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1])) { if (!group->meth->field_mul(group, tmp0, heap[i/2], heap[i + 1], ctx)) goto err; if (!group->meth->field_mul(group, tmp1, heap[i/2], heap[i], ctx)) goto err; if (!BN_copy(heap[i], tmp0)) goto err; if (!BN_copy(heap[i + 1], tmp1)) goto err; } else { if (!BN_copy(heap[i], heap[i/2])) goto err; } } /* we have replaced all non-zero Z's by their inverses, now fix up all the points */ for (i = 0; i < num; i++) { EC_POINT *p = points[i]; if (!BN_is_zero(&p->Z)) { /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) goto err; if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) goto err; if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) goto err; if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) goto err; if (group->meth->field_set_to_one != 0) { if (!group->meth->field_set_to_one(group, &p->Z, ctx)) goto err; } else { if (!BN_one(&p->Z)) goto err; } p->Z_is_one = 1; } } ret = 1; err: BN_CTX_end(ctx); if (new_ctx != NULL) BN_CTX_free(new_ctx); if (heap != NULL) { /* heap[pow2/2] .. heap[pow2-1] have not been allocated locally! */ for (i = pow2/2 - 1; i > 0; i--) { if (heap[i] != NULL) BN_clear_free(heap[i]); } OPENSSL_free(heap); } return ret; }int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return BN_mod_mul(r, a, b, &group->field, ctx); }int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { return BN_mod_sqr(r, a, &group->field, ctx); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -