⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ec2_mult.c

📁 OpenSSL 0.9.8k 最新版OpenSSL
💻 C
字号:
/* crypto/ec/ec2_mult.c *//* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * The Elliptic Curve Public-Key Crypto Library (ECC Code) included * herein is developed by SUN MICROSYSTEMS, INC., and is contributed * to the OpenSSL project. * * The ECC Code is licensed pursuant to the OpenSSL open source * license provided below. * * The software is originally written by Sheueling Chang Shantz and * Douglas Stebila of Sun Microsystems Laboratories. * *//* ==================================================================== * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer.  * * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in *    the documentation and/or other materials provided with the *    distribution. * * 3. All advertising materials mentioning features or use of this *    software must display the following acknowledgment: *    "This product includes software developed by the OpenSSL Project *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to *    endorse or promote products derived from this software without *    prior written permission. For written permission, please contact *    openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" *    nor may "OpenSSL" appear in their names without prior written *    permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following *    acknowledgment: *    "This product includes software developed by the OpenSSL Project *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com).  This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */#include <openssl/err.h>#include "ec_lcl.h"/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective  * coordinates. * Uses algorithm Mdouble in appendix of  *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over  *     GF(2^m) without precomputation". * modified to not require precomputation of c=b^{2^{m-1}}. */static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx)	{	BIGNUM *t1;	int ret = 0;		/* Since Mdouble is static we can guarantee that ctx != NULL. */	BN_CTX_start(ctx);	t1 = BN_CTX_get(ctx);	if (t1 == NULL) goto err;	if (!group->meth->field_sqr(group, x, x, ctx)) goto err;	if (!group->meth->field_sqr(group, t1, z, ctx)) goto err;	if (!group->meth->field_mul(group, z, x, t1, ctx)) goto err;	if (!group->meth->field_sqr(group, x, x, ctx)) goto err;	if (!group->meth->field_sqr(group, t1, t1, ctx)) goto err;	if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) goto err;	if (!BN_GF2m_add(x, x, t1)) goto err;	ret = 1; err:	BN_CTX_end(ctx);	return ret;	}/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery  * projective coordinates. * Uses algorithm Madd in appendix of  *     Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over  *     GF(2^m) without precomputation". */static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, 	const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx)	{	BIGNUM *t1, *t2;	int ret = 0;		/* Since Madd is static we can guarantee that ctx != NULL. */	BN_CTX_start(ctx);	t1 = BN_CTX_get(ctx);	t2 = BN_CTX_get(ctx);	if (t2 == NULL) goto err;	if (!BN_copy(t1, x)) goto err;	if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err;	if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err;	if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err;	if (!BN_GF2m_add(z1, z1, x1)) goto err;	if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err;	if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err;	if (!BN_GF2m_add(x1, x1, t2)) goto err;	ret = 1; err:	BN_CTX_end(ctx);	return ret;	}/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)  * using Montgomery point multiplication algorithm Mxy() in appendix of  *     Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over  *     GF(2^m) without precomputation". * Returns: *     0 on error *     1 if return value should be the point at infinity *     2 otherwise */static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, 	BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx)	{	BIGNUM *t3, *t4, *t5;	int ret = 0;		if (BN_is_zero(z1))		{		BN_zero(x2);		BN_zero(z2);		return 1;		}		if (BN_is_zero(z2))		{		if (!BN_copy(x2, x)) return 0;		if (!BN_GF2m_add(z2, x, y)) return 0;		return 2;		}			/* Since Mxy is static we can guarantee that ctx != NULL. */	BN_CTX_start(ctx);	t3 = BN_CTX_get(ctx);	t4 = BN_CTX_get(ctx);	t5 = BN_CTX_get(ctx);	if (t5 == NULL) goto err;	if (!BN_one(t5)) goto err;	if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err;	if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err;	if (!BN_GF2m_add(z1, z1, x1)) goto err;	if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err;	if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err;	if (!BN_GF2m_add(z2, z2, x2)) goto err;	if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err;	if (!group->meth->field_sqr(group, t4, x, ctx)) goto err;	if (!BN_GF2m_add(t4, t4, y)) goto err;	if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err;	if (!BN_GF2m_add(t4, t4, z2)) goto err;	if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err;	if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err;	if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err;	if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err;	if (!BN_GF2m_add(z2, x2, x)) goto err;	if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err;	if (!BN_GF2m_add(z2, z2, y)) goto err;	ret = 2; err:	BN_CTX_end(ctx);	return ret;	}/* Computes scalar*point and stores the result in r. * point can not equal r. * Uses algorithm 2P of *     Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over  *     GF(2^m) without precomputation". */static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,	const EC_POINT *point, BN_CTX *ctx)	{	BIGNUM *x1, *x2, *z1, *z2;	int ret = 0, i, j;	BN_ULONG mask;	if (r == point)		{		ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);		return 0;		}		/* if result should be point at infinity */	if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || 		EC_POINT_is_at_infinity(group, point))		{		return EC_POINT_set_to_infinity(group, r);		}	/* only support affine coordinates */	if (!point->Z_is_one) return 0;	/* Since point_multiply is static we can guarantee that ctx != NULL. */	BN_CTX_start(ctx);	x1 = BN_CTX_get(ctx);	z1 = BN_CTX_get(ctx);	if (z1 == NULL) goto err;	x2 = &r->X;	z2 = &r->Y;	if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */	if (!BN_one(z1)) goto err; /* z1 = 1 */	if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */	if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err;	if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */	/* find top most bit and go one past it */	i = scalar->top - 1; j = BN_BITS2 - 1;	mask = BN_TBIT;	while (!(scalar->d[i] & mask)) { mask >>= 1; j--; }	mask >>= 1; j--;	/* if top most bit was at word break, go to next word */	if (!mask) 		{		i--; j = BN_BITS2 - 1;		mask = BN_TBIT;		}	for (; i >= 0; i--)		{		for (; j >= 0; j--)			{			if (scalar->d[i] & mask)				{				if (!gf2m_Madd(group, &point->X, x1, z1, x2, z2, ctx)) goto err;				if (!gf2m_Mdouble(group, x2, z2, ctx)) goto err;				}			else				{				if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err;				if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err;				}			mask >>= 1;			}		j = BN_BITS2 - 1;		mask = BN_TBIT;		}	/* convert out of "projective" coordinates */	i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);	if (i == 0) goto err;	else if (i == 1) 		{		if (!EC_POINT_set_to_infinity(group, r)) goto err;		}	else		{		if (!BN_one(&r->Z)) goto err;		r->Z_is_one = 1;		}	/* GF(2^m) field elements should always have BIGNUM::neg = 0 */	BN_set_negative(&r->X, 0);	BN_set_negative(&r->Y, 0);	ret = 1; err:	BN_CTX_end(ctx);	return ret;	}/* Computes the sum *     scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] * gracefully ignoring NULL scalar values. */int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,	size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)	{	BN_CTX *new_ctx = NULL;	int ret = 0;	size_t i;	EC_POINT *p=NULL;	if (ctx == NULL)		{		ctx = new_ctx = BN_CTX_new();		if (ctx == NULL)			return 0;		}	/* This implementation is more efficient than the wNAF implementation for 2	 * or fewer points.  Use the ec_wNAF_mul implementation for 3 or more points,	 * or if we can perform a fast multiplication based on precomputation.	 */	if ((scalar && (num > 1)) || (num > 2) || (num == 0 && EC_GROUP_have_precompute_mult(group)))		{		ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);		goto err;		}	if ((p = EC_POINT_new(group)) == NULL) goto err;	if (!EC_POINT_set_to_infinity(group, r)) goto err;	if (scalar)		{		if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) goto err;		if (BN_is_negative(scalar)) 			if (!group->meth->invert(group, p, ctx)) goto err;		if (!group->meth->add(group, r, r, p, ctx)) goto err;		}	for (i = 0; i < num; i++)		{		if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) goto err;		if (BN_is_negative(scalars[i]))			if (!group->meth->invert(group, p, ctx)) goto err;		if (!group->meth->add(group, r, r, p, ctx)) goto err;		}	ret = 1;  err:	if (p) EC_POINT_free(p);	if (new_ctx != NULL)		BN_CTX_free(new_ctx);	return ret;	}/* Precomputation for point multiplication: fall back to wNAF methods * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)	{	return ec_wNAF_precompute_mult(group, ctx); 	}int ec_GF2m_have_precompute_mult(const EC_GROUP *group)	{	return ec_wNAF_have_precompute_mult(group); 	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -