⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_gcd.c

📁 OpenSSL 0.9.8k 最新版OpenSSL
💻 C
📖 第 1 页 / 共 2 页
字号:
				 * actually makes the algorithm slower */				if (!BN_usub(B, B, A)) goto err;				}			else				{				/*  sign*(X + Y)*a == A - B  (mod |n|) */				if (!BN_uadd(Y, Y, X)) goto err;				/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */				if (!BN_usub(A, A, B)) goto err;				}			}		}	else		{		/* general inversion algorithm */		while (!BN_is_zero(B))			{			BIGNUM *tmp;						/*			 *      0 < B < A,			 * (*) -sign*X*a  ==  B   (mod |n|),			 *      sign*Y*a  ==  A   (mod |n|)			 */						/* (D, M) := (A/B, A%B) ... */			if (BN_num_bits(A) == BN_num_bits(B))				{				if (!BN_one(D)) goto err;				if (!BN_sub(M,A,B)) goto err;				}			else if (BN_num_bits(A) == BN_num_bits(B) + 1)				{				/* A/B is 1, 2, or 3 */				if (!BN_lshift1(T,B)) goto err;				if (BN_ucmp(A,T) < 0)					{					/* A < 2*B, so D=1 */					if (!BN_one(D)) goto err;					if (!BN_sub(M,A,B)) goto err;					}				else					{					/* A >= 2*B, so D=2 or D=3 */					if (!BN_sub(M,A,T)) goto err;					if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */					if (BN_ucmp(A,D) < 0)						{						/* A < 3*B, so D=2 */						if (!BN_set_word(D,2)) goto err;						/* M (= A - 2*B) already has the correct value */						}					else						{						/* only D=3 remains */						if (!BN_set_word(D,3)) goto err;						/* currently  M = A - 2*B,  but we need  M = A - 3*B */						if (!BN_sub(M,M,B)) goto err;						}					}				}			else				{				if (!BN_div(D,M,A,B,ctx)) goto err;				}						/* Now			 *      A = D*B + M;			 * thus we have			 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).			 */						tmp=A; /* keep the BIGNUM object, the value does not matter */						/* (A, B) := (B, A mod B) ... */			A=B;			B=M;			/* ... so we have  0 <= B < A  again */						/* Since the former  M  is now  B  and the former  B  is now  A,			 * (**) translates into			 *       sign*Y*a  ==  D*A + B    (mod |n|),			 * i.e.			 *       sign*Y*a - D*A  ==  B    (mod |n|).			 * Similarly, (*) translates into			 *      -sign*X*a  ==  A          (mod |n|).			 *			 * Thus,			 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),			 * i.e.			 *        sign*(Y + D*X)*a  ==  B  (mod |n|).			 *			 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at			 *      -sign*X*a  ==  B   (mod |n|),			 *       sign*Y*a  ==  A   (mod |n|).			 * Note that  X  and  Y  stay non-negative all the time.			 */						/* most of the time D is very small, so we can optimize tmp := D*X+Y */			if (BN_is_one(D))				{				if (!BN_add(tmp,X,Y)) goto err;				}			else				{				if (BN_is_word(D,2))					{					if (!BN_lshift1(tmp,X)) goto err;					}				else if (BN_is_word(D,4))					{					if (!BN_lshift(tmp,X,2)) goto err;					}				else if (D->top == 1)					{					if (!BN_copy(tmp,X)) goto err;					if (!BN_mul_word(tmp,D->d[0])) goto err;					}				else					{					if (!BN_mul(tmp,D,X,ctx)) goto err;					}				if (!BN_add(tmp,tmp,Y)) goto err;				}						M=Y; /* keep the BIGNUM object, the value does not matter */			Y=X;			X=tmp;			sign = -sign;			}		}			/*	 * The while loop (Euclid's algorithm) ends when	 *      A == gcd(a,n);	 * we have	 *       sign*Y*a  ==  A  (mod |n|),	 * where  Y  is non-negative.	 */	if (sign < 0)		{		if (!BN_sub(Y,n,Y)) goto err;		}	/* Now  Y*a  ==  A  (mod |n|).  */		if (BN_is_one(A))		{		/* Y*a == 1  (mod |n|) */		if (!Y->neg && BN_ucmp(Y,n) < 0)			{			if (!BN_copy(R,Y)) goto err;			}		else			{			if (!BN_nnmod(R,Y,n,ctx)) goto err;			}		}	else		{		BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);		goto err;		}	ret=R;err:	if ((ret == NULL) && (in == NULL)) BN_free(R);	BN_CTX_end(ctx);	bn_check_top(ret);	return(ret);	}/* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.  * It does not contain branches that may leak sensitive information. */static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)	{	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;	BIGNUM local_A, local_B;	BIGNUM *pA, *pB;	BIGNUM *ret=NULL;	int sign;	bn_check_top(a);	bn_check_top(n);	BN_CTX_start(ctx);	A = BN_CTX_get(ctx);	B = BN_CTX_get(ctx);	X = BN_CTX_get(ctx);	D = BN_CTX_get(ctx);	M = BN_CTX_get(ctx);	Y = BN_CTX_get(ctx);	T = BN_CTX_get(ctx);	if (T == NULL) goto err;	if (in == NULL)		R=BN_new();	else		R=in;	if (R == NULL) goto err;	BN_one(X);	BN_zero(Y);	if (BN_copy(B,a) == NULL) goto err;	if (BN_copy(A,n) == NULL) goto err;	A->neg = 0;	if (B->neg || (BN_ucmp(B, A) >= 0))		{		/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,	 	 * BN_div_no_branch will be called eventually.	 	 */		pB = &local_B;		BN_with_flags(pB, B, BN_FLG_CONSTTIME);			if (!BN_nnmod(B, pB, A, ctx)) goto err;		}	sign = -1;	/* From  B = a mod |n|,  A = |n|  it follows that	 *	 *      0 <= B < A,	 *     -sign*X*a  ==  B   (mod |n|),	 *      sign*Y*a  ==  A   (mod |n|).	 */	while (!BN_is_zero(B))		{		BIGNUM *tmp;				/*		 *      0 < B < A,		 * (*) -sign*X*a  ==  B   (mod |n|),		 *      sign*Y*a  ==  A   (mod |n|)		 */		/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,	 	 * BN_div_no_branch will be called eventually.	 	 */		pA = &local_A;		BN_with_flags(pA, A, BN_FLG_CONSTTIME);					/* (D, M) := (A/B, A%B) ... */				if (!BN_div(D,M,pA,B,ctx)) goto err;				/* Now		 *      A = D*B + M;		 * thus we have		 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).		 */				tmp=A; /* keep the BIGNUM object, the value does not matter */				/* (A, B) := (B, A mod B) ... */		A=B;		B=M;		/* ... so we have  0 <= B < A  again */				/* Since the former  M  is now  B  and the former  B  is now  A,		 * (**) translates into		 *       sign*Y*a  ==  D*A + B    (mod |n|),		 * i.e.		 *       sign*Y*a - D*A  ==  B    (mod |n|).		 * Similarly, (*) translates into		 *      -sign*X*a  ==  A          (mod |n|).		 *		 * Thus,		 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),		 * i.e.		 *        sign*(Y + D*X)*a  ==  B  (mod |n|).		 *		 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at		 *      -sign*X*a  ==  B   (mod |n|),		 *       sign*Y*a  ==  A   (mod |n|).		 * Note that  X  and  Y  stay non-negative all the time.		 */					if (!BN_mul(tmp,D,X,ctx)) goto err;		if (!BN_add(tmp,tmp,Y)) goto err;		M=Y; /* keep the BIGNUM object, the value does not matter */		Y=X;		X=tmp;		sign = -sign;		}			/*	 * The while loop (Euclid's algorithm) ends when	 *      A == gcd(a,n);	 * we have	 *       sign*Y*a  ==  A  (mod |n|),	 * where  Y  is non-negative.	 */	if (sign < 0)		{		if (!BN_sub(Y,n,Y)) goto err;		}	/* Now  Y*a  ==  A  (mod |n|).  */	if (BN_is_one(A))		{		/* Y*a == 1  (mod |n|) */		if (!Y->neg && BN_ucmp(Y,n) < 0)			{			if (!BN_copy(R,Y)) goto err;			}		else			{			if (!BN_nnmod(R,Y,n,ctx)) goto err;			}		}	else		{		BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE);		goto err;		}	ret=R;err:	if ((ret == NULL) && (in == NULL)) BN_free(R);	BN_CTX_end(ctx);	bn_check_top(ret);	return(ret);	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -