📄 quadgold.m
字号:
function int = quadg(fun,xlow,xhigh,tol,trace,p1,p2,p3,p4,p5,p6,p7,p8,p9)%usage: int = quadg('Fun',xlow,xhigh)%or% int = quadg('Fun',xlow,xhigh,tol)%or% int = quadg('Fun',xlow,xhigh,tol,trace,p1,p2,....)%%This function works just like QUAD or QUAD8 but uses a Gaussian quadrature%integration scheme. Use this routine instead of QUAD or QUAD8:% if higher accuracy is desired (this works best if the function, % 'Fun', can be approximated by a power series) % or if many similar integrations are going to be done (I think less% function evaluations will typically be done, but the % integration points and the weights must be calculated.% These are saved between integrations so when QUADG% is called again, the points and weights are all ready% known.)% or if the function evaluations are time consuming.%Note that if there are discontinuities the integral should be broken up into separate %pieces. And if there are singularities, a more appropriate integration quadrature%should be used (such as the Gauss-Chebyshev).global b2global w2if exist('tol')~=1, tol=1e-3;elseif tol==[], tol=1e-3;endif exist('trace')~=1, trace=0;elseif trace==[], trace=0;else, trace=1;end%setup string to call the functionexec_string=['y=',fun,'(x'];num_parameters=nargin-5;for i=1:num_parameters, exec_string=[exec_string,',p',int2str(i)];endexec_string=[exec_string,');'];%setup mapping parametersjacob=(xhigh-xlow)/2;%generate the first two sets of integration points and weightsif exist('b2')~=1, [b2,w2]=grule(2);endx=(b2+1)*jacob+xlow;eval(exec_string);int_old=sum(w2.*y)*jacob;if trace==1, x_trace=x(:); y_trace=y(:);endconverge='n';for i=1:7, gnum=int2str(2^(i+1)); if exist(['b',gnum])~=1, eval(['[b',gnum,',w',gnum,']=grule(',gnum,');']); eval(['global b',gnum,',w',gnum,';']); end eval(['x=(b',gnum,'+1)*jacob+xlow;']); eval(exec_string); eval(['int=sum(w',gnum,'.*y)*jacob;']); if trace==1, x_trace=[x_trace;x(:)]; y_trace=[y_trace;y(:)]; end if abs(int_old-int) < abs(tol*int), converge='y'; break; end int_old=int;endif converge=='n', disp('Integral did not converge--singularity likely')endif trace==1, plot(x_trace,y_trace,'+')end%gnum,i,length(x_trace)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -