⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lmbc_core.c

📁 A sparse variant of the Levenberg-Marquardt algorithm implemented by levmar has been applied to bund
💻 C
📖 第 1 页 / 共 3 页
字号:
       *jacTe,      /* J^T e_i mx1 */       *jac,        /* nxm */       *jacTjac,    /* mxm */       *Dp,         /* mx1 */   *diag_jacTjac,   /* diagonal of J^T J, mx1 */       *pDp;        /* p + Dp, mx1 */register LM_REAL mu,  /* damping constant */                tmp; /* mainly used in matrix & vector multiplications */LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;LM_REAL tau, eps1, eps2, eps2_sq, eps3;LM_REAL init_p_eL2;int nu=2, nu2, stop=0, nfev, njev=0, nlss=0;const int nm=n*m;/* variables for constrained LM */struct FUNC_STATE fstate;LM_REAL alpha=LM_CNST(1e-4), beta=LM_CNST(0.9), gamma=LM_CNST(0.99995), gamma_sq=gamma*gamma, rho=LM_CNST(1e-8);LM_REAL t, t0;LM_REAL steptl=LM_CNST(1e3)*(LM_REAL)sqrt(LM_REAL_EPSILON), jacTeDp;LM_REAL tmin=LM_CNST(1e-12), tming=LM_CNST(1e-18); /* minimum step length for LS and PG steps */const LM_REAL tini=LM_CNST(1.0); /* initial step length for LS and PG steps */int nLMsteps=0, nLSsteps=0, nPGsteps=0, gprevtaken=0;int numactive;int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL;  mu=jacTe_inf=t=0.0;  tmin=tmin; /* -Wall */  if(n<m){    fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);    return LM_ERROR;  }  if(!jacf){    fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_BC_DER)        RCAT("().\nIf no such function is available, use ", LEVMAR_BC_DIF) RCAT("() rather than ", LEVMAR_BC_DER) "()\n");    return LM_ERROR;  }  if(!LEVMAR_BOX_CHECK(lb, ub, m)){    fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): at least one lower bound exceeds the upper one\n"));    return LM_ERROR;  }  if(opts){	  tau=opts[0];	  eps1=opts[1];	  eps2=opts[2];	  eps2_sq=opts[2]*opts[2];	  eps3=opts[3];  }  else{ // use default values	  tau=LM_CNST(LM_INIT_MU);	  eps1=LM_CNST(LM_STOP_THRESH);	  eps2=LM_CNST(LM_STOP_THRESH);	  eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH);	  eps3=LM_CNST(LM_STOP_THRESH);  }  if(!work){    worksz=LM_BC_DER_WORKSZ(m, n); //2*n+4*m + n*m + m*m;    work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */    if(!work){      fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): memory allocation request failed\n"));      return LM_ERROR;    }    freework=1;  }  /* set up work arrays */  e=work;  hx=e + n;  jacTe=hx + n;  jac=jacTe + m;  jacTjac=jac + nm;  Dp=jacTjac + m*m;  diag_jacTjac=Dp + m;  pDp=diag_jacTjac + m;  fstate.n=n;  fstate.hx=hx;  fstate.x=x;  fstate.adata=adata;  fstate.nfev=&nfev;    /* see if starting point is within the feasile set */  for(i=0; i<m; ++i)    pDp[i]=p[i];  BOXPROJECT(p, lb, ub, m); /* project to feasible set */  for(i=0; i<m; ++i)    if(pDp[i]!=p[i])      fprintf(stderr, RCAT("Warning: component %d of starting point not feasible in ", LEVMAR_BC_DER) "()! [%g projected to %g]\n",                      i, pDp[i], p[i]);  /* compute e=x - f(p) and its L2 norm */  (*func)(p, hx, m, n, adata); nfev=1;  /* ### e=x-hx, p_eL2=||e|| */#if 1  p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n);#else  for(i=0, p_eL2=0.0; i<n; ++i){    e[i]=tmp=x[i]-hx[i];    p_eL2+=tmp*tmp;  }#endif  init_p_eL2=p_eL2;  if(!LM_FINITE(p_eL2)) stop=7;  for(k=0; k<itmax && !stop; ++k){    /* Note that p and e have been updated at a previous iteration */    if(p_eL2<=eps3){ /* error is small */      stop=6;      break;    }    /* Compute the Jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2.     * Since J^T J is symmetric, its computation can be sped up by computing     * only its upper triangular part and copying it to the lower part     */    (*jacf)(p, jac, m, n, adata); ++njev;    /* J^T J, J^T e */    if(nm<__BLOCKSZ__SQ){ // this is a small problem      /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj.       * Thus, the product J^T J can be computed using an outer loop for       * l that adds J_li*J_lj to each element ij of the result. Note that       * with this scheme, the accesses to J and JtJ are always along rows,       * therefore induces less cache misses compared to the straightforward       * algorithm for computing the product (i.e., l loop is innermost one).       * A similar scheme applies to the computation of J^T e.       * However, for large minimization problems (i.e., involving a large number       * of unknowns and measurements) for which J/J^T J rows are too large to       * fit in the L1 cache, even this scheme incures many cache misses. In       * such cases, a cache-efficient blocking scheme is preferable.       *       * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this       * performance problem.       *       * Note that the non-blocking algorithm is faster on small       * problems since in this case it avoids the overheads of blocking.        */      register int l, im;      register LM_REAL alpha, *jaclm;      /* looping downwards saves a few computations */      for(i=m*m; i-->0; )        jacTjac[i]=0.0;      for(i=m; i-->0; )        jacTe[i]=0.0;      for(l=n; l-->0; ){        jaclm=jac+l*m;        for(i=m; i-->0; ){          im=i*m;          alpha=jaclm[i]; //jac[l*m+i];          for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */            jacTjac[im+j]+=jaclm[j]*alpha; //jac[l*m+j]          /* J^T e */          jacTe[i]+=alpha*e[l];        }      }      for(i=m; i-->0; ) /* copy to upper part */        for(j=i+1; j<m; ++j)          jacTjac[i*m+j]=jacTjac[j*m+i];    }    else{ // this is a large problem      /* Cache efficient computation of J^T J based on blocking       */      LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);      /* cache efficient computation of J^T e */      for(i=0; i<m; ++i)        jacTe[i]=0.0;      for(i=0; i<n; ++i){        register LM_REAL *jacrow;        for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)          jacTe[l]+=jacrow[l]*tmp;      }    }	  /* Compute ||J^T e||_inf and ||p||^2. Note that ||J^T e||_inf     * is computed for free (i.e. inactive) variables only.      * At a local minimum, if p[i]==ub[i] then g[i]>0;     * if p[i]==lb[i] g[i]<0; otherwise g[i]=0      */    for(i=j=numactive=0, p_L2=jacTe_inf=0.0; i<m; ++i){      if(ub && p[i]==ub[i]){ ++numactive; if(jacTe[i]>0.0) ++j; }      else if(lb && p[i]==lb[i]){ ++numactive; if(jacTe[i]<0.0) ++j; }      else if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;      diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */      p_L2+=p[i]*p[i];    }    //p_L2=sqrt(p_L2);#if 0if(!(k%100)){  printf("Current estimate: ");  for(i=0; i<m; ++i)    printf("%.9g ", p[i]);  printf("-- errors %.9g %0.9g, #active %d [%d]\n", jacTe_inf, p_eL2, numactive, j);}#endif    /* check for convergence */    if(j==numactive && (jacTe_inf <= eps1)){      Dp_L2=0.0; /* no increment for p in this case */      stop=1;      break;    }   /* compute initial damping factor */    if(k==0){      if(!lb && !ub){ /* no bounds */        for(i=0, tmp=LM_REAL_MIN; i<m; ++i)          if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */        mu=tau*tmp;      }      else         mu=LM_CNST(0.5)*tau*p_eL2; /* use Kanzow's starting mu */    }    /* determine increment using a combination of adaptive damping, line search and projected gradient search */    while(1){      /* augment normal equations */      for(i=0; i<m; ++i)        jacTjac[i*m+i]+=mu;      /* solve augmented equations */#ifdef HAVE_LAPACK      /* 5 alternatives are available: LU, Cholesky, 2 variants of QR decomposition and SVD.       * Cholesky is the fastest but might be inaccurate; QR is slower but more accurate;       * SVD is the slowest but most accurate; LU offers a tradeoff between accuracy and speed       */      issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;      //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL;      //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR;      //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS;      //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD;#else      /* use the LU included with levmar */      issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;#endif /* HAVE_LAPACK */      if(issolved){        for(i=0; i<m; ++i)          pDp[i]=p[i] + Dp[i];        /* compute p's new estimate and ||Dp||^2 */        BOXPROJECT(pDp, lb, ub, m); /* project to feasible set */        for(i=0, Dp_L2=0.0; i<m; ++i){          Dp[i]=tmp=pDp[i]-p[i];          Dp_L2+=tmp*tmp;        }        //Dp_L2=sqrt(Dp_L2);        if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */          stop=2;          break;        }        if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */          stop=4;          break;        }        (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */        /* ### hx=x-hx, pDp_eL2=||hx|| */#if 1        pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n);#else        for(i=0, pDp_eL2=0.0; i<n; ++i){ /* compute ||e(pDp)||_2 */          hx[i]=tmp=x[i]-hx[i];          pDp_eL2+=tmp*tmp;        }#endif        if(!LM_FINITE(pDp_eL2)){          stop=7;          break;        }        if(pDp_eL2<=gamma_sq*p_eL2){          for(i=0, dL=0.0; i<m; ++i)            dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);#if 1          if(dL>0.0){            dF=p_eL2-pDp_eL2;            tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0));            tmp=LM_CNST(1.0)-tmp*tmp*tmp;            mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) );          }          else            mu=(mu>=pDp_eL2)? pDp_eL2 : mu; /* pDp_eL2 is the new pDp_eL2 */#else          mu=(mu>=pDp_eL2)? pDp_eL2 : mu; /* pDp_eL2 is the new pDp_eL2 */#endif          nu=2;          for(i=0 ; i<m; ++i) /* update p's estimate */            p[i]=pDp[i];          for(i=0; i<n; ++i) /* update e and ||e||_2 */            e[i]=hx[i];          p_eL2=pDp_eL2;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -