📄 lmbc_core.c
字号:
/////////////////////////////////////////////////////////////////////////////////// // Levenberg - Marquardt non-linear minimization algorithm// Copyright (C) 2004-05 Manolis Lourakis (lourakis at ics forth gr)// Institute of Computer Science, Foundation for Research & Technology - Hellas// Heraklion, Crete, Greece.//// This program is free software; you can redistribute it and/or modify// it under the terms of the GNU General Public License as published by// the Free Software Foundation; either version 2 of the License, or// (at your option) any later version.//// This program is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.///////////////////////////////////////////////////////////////////////////////////#ifndef LM_REAL // not included by lmbc.c#error This file should not be compiled directly!#endif/* precision-specific definitions */#define FUNC_STATE LM_ADD_PREFIX(func_state)#define LNSRCH LM_ADD_PREFIX(lnsrch)#define BOXPROJECT LM_ADD_PREFIX(boxProject)#define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check)#define LEVMAR_BC_DER LM_ADD_PREFIX(levmar_bc_der)#define LEVMAR_BC_DIF LM_ADD_PREFIX(levmar_bc_dif)#define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx)#define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx)#define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult)#define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy)#define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)#define LMBC_DIF_DATA LM_ADD_PREFIX(lmbc_dif_data)#define LMBC_DIF_FUNC LM_ADD_PREFIX(lmbc_dif_func)#define LMBC_DIF_JACF LM_ADD_PREFIX(lmbc_dif_jacf)#ifdef HAVE_LAPACK#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)#define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)#define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)#define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)#define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)#else#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack)#endif /* HAVE_LAPACK *//* find the median of 3 numbers */#define __MEDIAN3(a, b, c) ( ((a) >= (b))?\ ( ((c) >= (a))? (a) : ( ((c) <= (b))? (b) : (c) ) ) : \ ( ((c) >= (b))? (b) : ( ((c) <= (a))? (a) : (c) ) ) )#define _POW_ LM_CNST(2.1)#define __LSITMAX 150 // max #iterations for line searchstruct FUNC_STATE{ int n, *nfev; LM_REAL *hx, *x; void *adata;};static voidLNSRCH(int m, LM_REAL *x, LM_REAL f, LM_REAL *g, LM_REAL *p, LM_REAL alpha, LM_REAL *xpls, LM_REAL *ffpls, void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), struct FUNC_STATE state, int *mxtake, int *iretcd, LM_REAL stepmx, LM_REAL steptl, LM_REAL *sx){/* Find a next newton iterate by backtracking line search. * Specifically, finds a \lambda such that for a fixed alpha<0.5 (usually 1e-4), * f(x + \lambda*p) <= f(x) + alpha * \lambda * g^T*p * * Translated (with minor changes) from Schnabel, Koontz & Weiss uncmin.f, v1.3 * PARAMETERS : * m --> dimension of problem (i.e. number of variables) * x(m) --> old iterate: x[k-1] * f --> function value at old iterate, f(x) * g(m) --> gradient at old iterate, g(x), or approximate * p(m) --> non-zero newton step * alpha --> fixed constant < 0.5 for line search (see above) * xpls(m) <-- new iterate x[k] * ffpls <-- function value at new iterate, f(xpls) * func --> name of subroutine to evaluate function * state <--> information other than x and m that func requires. * state is not modified in xlnsrch (but can be modified by func). * iretcd <-- return code * mxtake <-- boolean flag indicating step of maximum length used * stepmx --> maximum allowable step size * steptl --> relative step size at which successive iterates * considered close enough to terminate algorithm * sx(m) --> diagonal scaling matrix for x, can be NULL * internal variables * sln newton length * rln relative length of newton step*/ register int i, j; int firstback = 1; LM_REAL disc; LM_REAL a3, b; LM_REAL t1, t2, t3, lambda, tlmbda, rmnlmb; LM_REAL scl, rln, sln, slp; LM_REAL tmp1, tmp2; LM_REAL fpls, pfpls = 0., plmbda = 0.; /* -Wall */ f*=LM_CNST(0.5); *mxtake = 0; *iretcd = 2; tmp1 = 0.; if(!sx) /* no scaling */ for (i = 0; i < m; ++i) tmp1 += p[i] * p[i]; else for (i = 0; i < m; ++i) tmp1 += sx[i] * sx[i] * p[i] * p[i]; sln = (LM_REAL)sqrt(tmp1); if (sln > stepmx) { /* newton step longer than maximum allowed */ scl = stepmx / sln; for(i=0; i<m; ++i) /* p * scl */ p[i]*=scl; sln = stepmx; } for(i=0, slp=0.; i<m; ++i) /* g^T * p */ slp+=g[i]*p[i]; rln = 0.; if(!sx) /* no scaling */ for (i = 0; i < m; ++i) { tmp1 = (FABS(x[i])>=LM_CNST(1.))? FABS(x[i]) : LM_CNST(1.); tmp2 = FABS(p[i])/tmp1; if(rln < tmp2) rln = tmp2; } else for (i = 0; i < m; ++i) { tmp1 = (FABS(x[i])>=LM_CNST(1.)/sx[i])? FABS(x[i]) : LM_CNST(1.)/sx[i]; tmp2 = FABS(p[i])/tmp1; if(rln < tmp2) rln = tmp2; } rmnlmb = steptl / rln; lambda = LM_CNST(1.0); /* check if new iterate satisfactory. generate new lambda if necessary. */ for(j=__LSITMAX; j>=0; --j) { for (i = 0; i < m; ++i) xpls[i] = x[i] + lambda * p[i]; /* evaluate function at new point */ (*func)(xpls, state.hx, m, state.n, state.adata); ++(*(state.nfev)); /* ### state.hx=state.x-state.hx, tmp1=||state.hx|| */#if 1 tmp1=LEVMAR_L2NRMXMY(state.hx, state.x, state.hx, state.n);#else for(i=0, tmp1=0.0; i<state.n; ++i){ state.hx[i]=tmp2=state.x[i]-state.hx[i]; tmp1+=tmp2*tmp2; }#endif fpls=LM_CNST(0.5)*tmp1; *ffpls=tmp1; if (fpls <= f + slp * alpha * lambda) { /* solution found */ *iretcd = 0; if (lambda == LM_CNST(1.) && sln > stepmx * LM_CNST(.99)) *mxtake = 1; return; } /* else : solution not (yet) found */ /* First find a point with a finite value */ if (lambda < rmnlmb) { /* no satisfactory xpls found sufficiently distinct from x */ *iretcd = 1; return; } else { /* calculate new lambda */ /* modifications to cover non-finite values */ if (!LM_FINITE(fpls)) { lambda *= LM_CNST(0.1); firstback = 1; } else { if (firstback) { /* first backtrack: quadratic fit */ tlmbda = -lambda * slp / ((fpls - f - slp) * LM_CNST(2.)); firstback = 0; } else { /* all subsequent backtracks: cubic fit */ t1 = fpls - f - lambda * slp; t2 = pfpls - f - plmbda * slp; t3 = LM_CNST(1.) / (lambda - plmbda); a3 = LM_CNST(3.) * t3 * (t1 / (lambda * lambda) - t2 / (plmbda * plmbda)); b = t3 * (t2 * lambda / (plmbda * plmbda) - t1 * plmbda / (lambda * lambda)); disc = b * b - a3 * slp; if (disc > b * b) /* only one positive critical point, must be minimum */ tlmbda = (-b + ((a3 < 0)? -(LM_REAL)sqrt(disc): (LM_REAL)sqrt(disc))) /a3; else /* both critical points positive, first is minimum */ tlmbda = (-b + ((a3 < 0)? (LM_REAL)sqrt(disc): -(LM_REAL)sqrt(disc))) /a3; if (tlmbda > lambda * LM_CNST(.5)) tlmbda = lambda * LM_CNST(.5); } plmbda = lambda; pfpls = fpls; if (tlmbda < lambda * LM_CNST(.1)) lambda *= LM_CNST(.1); else lambda = tlmbda; } } } /* this point is reached when the iterations limit is exceeded */ *iretcd = 1; /* failed */ return;} /* LNSRCH *//* Projections to feasible set \Omega: P_{\Omega}(y) := arg min { ||x - y|| : x \in \Omega}, y \in R^m *//* project vector p to a box shaped feasible set. p is a mx1 vector. * Either lb, ub can be NULL. If not NULL, they are mx1 vectors */static void BOXPROJECT(LM_REAL *p, LM_REAL *lb, LM_REAL *ub, int m){register int i; if(!lb){ /* no lower bounds */ if(!ub) /* no upper bounds */ return; else{ /* upper bounds only */ for(i=0; i<m; ++i) if(p[i]>ub[i]) p[i]=ub[i]; } } else if(!ub){ /* lower bounds only */ for(i=0; i<m; ++i) if(p[i]<lb[i]) p[i]=lb[i]; } else /* box bounds */ for(i=0; i<m; ++i) p[i]=__MEDIAN3(lb[i], p[i], ub[i]);}/* * This function seeks the parameter vector p that best describes the measurements * vector x under box constraints. * More precisely, given a vector function func : R^m --> R^n with n>=m, * it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of * e=x-func(p) is minimized under the constraints lb[i]<=p[i]<=ub[i]. * If no lower bound constraint applies for p[i], use -DBL_MAX/-FLT_MAX for lb[i]; * If no upper bound constraint applies for p[i], use DBL_MAX/FLT_MAX for ub[i]. * * This function requires an analytic Jacobian. In case the latter is unavailable, * use LEVMAR_BC_DIF() bellow * * Returns the number of iterations (>=0) if successful, LM_ERROR if failed * * For details, see C. Kanzow, N. Yamashita and M. Fukushima: "Levenberg-Marquardt * methods for constrained nonlinear equations with strong local convergence properties", * Journal of Computational and Applied Mathematics 172, 2004, pp. 375-397. * Also, see K. Madsen, H.B. Nielsen and O. Tingleff's lecture notes on * unconstrained Levenberg-Marquardt at http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf */int LEVMAR_BC_DER( void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */ void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata), /* function to evaluate the Jacobian \part x / \part p */ LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */ LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */ int m, /* I: parameter vector dimension (i.e. #unknowns) */ int n, /* I: measurement vector dimension */ LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */ LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */ int itmax, /* I: maximum number of iterations */ LM_REAL opts[4], /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu, * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used. * Note that ||J^T e||_inf is computed on free (not equal to lb[i] or ub[i]) variables only. */ LM_REAL info[LM_INFO_SZ], /* O: information regarding the minimization. Set to NULL if don't care * info[0]= ||e||_2 at initial p. * info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. * info[5]= # iterations, * info[6]=reason for terminating: 1 - stopped by small gradient J^T e * 2 - stopped by small Dp * 3 - stopped by itmax * 4 - singular matrix. Restart from current p with increased mu * 5 - no further error reduction is possible. Restart with increased mu * 6 - stopped by small ||e||_2 * 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error * info[7]= # function evaluations * info[8]= # Jacobian evaluations * info[9]= # linear systems solved, i.e. # attempts for reducing error */ LM_REAL *work, /* working memory at least LM_BC_DER_WORKSZ() reals large, allocated if NULL */ LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ void *adata) /* pointer to possibly additional data, passed uninterpreted to func & jacf. * Set to NULL if not needed */{register int i, j, k, l;int worksz, freework=0, issolved;/* temp work arrays */LM_REAL *e, /* nx1 */ *hx, /* \hat{x}_i, nx1 */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -