⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 axb_core.c

📁 A sparse variant of the Levenberg-Marquardt algorithm implemented by levmar has been applied to bund
💻 C
📖 第 1 页 / 共 2 页
字号:
/////////////////////////////////////////////////////////////////////////////////// //  Solution of linear systems involved in the Levenberg - Marquardt//  minimization algorithm//  Copyright (C) 2004  Manolis Lourakis (lourakis at ics forth gr)//  Institute of Computer Science, Foundation for Research & Technology - Hellas//  Heraklion, Crete, Greece.////  This program is free software; you can redistribute it and/or modify//  it under the terms of the GNU General Public License as published by//  the Free Software Foundation; either version 2 of the License, or//  (at your option) any later version.////  This program is distributed in the hope that it will be useful,//  but WITHOUT ANY WARRANTY; without even the implied warranty of//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the//  GNU General Public License for more details.////////////////////////////////////////////////////////////////////////////////////* Solvers for the linear systems Ax=b. Solvers should NOT modify their A & B arguments! */#ifndef LM_REAL // not included by Axb.c#error This file should not be compiled directly!#endif#ifdef LINSOLVERS_RETAIN_MEMORY#define __STATIC__ static#else#define __STATIC__ // empty#endif /* LINSOLVERS_RETAIN_MEMORY */#ifdef HAVE_LAPACK/* prototypes of LAPACK routines */#define GEQRF LM_MK_LAPACK_NAME(geqrf)#define ORGQR LM_MK_LAPACK_NAME(orgqr)#define TRTRS LM_MK_LAPACK_NAME(trtrs)#define POTF2 LM_MK_LAPACK_NAME(potf2)#define POTRF LM_MK_LAPACK_NAME(potrf)#define POTRS LM_MK_LAPACK_NAME(potrs)#define GETRF LM_MK_LAPACK_NAME(getrf)#define GETRS LM_MK_LAPACK_NAME(getrs)#define GESVD LM_MK_LAPACK_NAME(gesvd)#define GESDD LM_MK_LAPACK_NAME(gesdd)/* QR decomposition */extern int GEQRF(int *m, int *n, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info);extern int ORGQR(int *m, int *n, int *k, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info);/* solution of triangular systems */extern int TRTRS(char *uplo, char *trans, char *diag, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info);/* Cholesky decomposition and systems solution */extern int POTF2(char *uplo, int *n, LM_REAL *a, int *lda, int *info);extern int POTRF(char *uplo, int *n, LM_REAL *a, int *lda, int *info); /* block version of dpotf2 */extern int POTRS(char *uplo, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info);/* LU decomposition and systems solution */extern int GETRF(int *m, int *n, LM_REAL *a, int *lda, int *ipiv, int *info);extern int GETRS(char *trans, int *n, int *nrhs, LM_REAL *a, int *lda, int *ipiv, LM_REAL *b, int *ldb, int *info);/* Singular Value Decomposition (SVD) */extern int GESVD(char *jobu, char *jobvt, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu,                   LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *info);/* lapack 3.0 new SVD routine, faster than xgesvd(). * In case that your version of LAPACK does not include them, use the above two older routines */extern int GESDD(char *jobz, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt,                   LM_REAL *work, int *lwork, int *iwork, int *info);/* precision-specific definitions */#define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)#define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)#define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)#define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)/* * This function returns the solution of Ax = b * * The function is based on QR decomposition with explicit computation of Q: * If A=Q R with Q orthogonal and R upper triangular, the linear system becomes * Q R x = b or R x = Q^T b. * The last equation can be solved directly. * * A is mxm, b is mx1 * * The function returns 0 in case of error, 1 if successful * * This function is often called repetitively to solve problems of identical * dimensions. To avoid repetitive malloc's and free's, allocated memory is * retained between calls and free'd-malloc'ed when not of the appropriate size. * A call with NULL as the first argument forces this memory to be released. */int AX_EQ_B_QR(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m){__STATIC__ LM_REAL *buf=NULL;__STATIC__ int buf_sz=0;static int nb=0; /* no __STATIC__ decl. here! */LM_REAL *a, *qtb, *tau, *r, *work;int a_sz, qtb_sz, tau_sz, r_sz, tot_sz;register int i, j;int info, worksz, nrhs=1;register LM_REAL sum;    if(!A)#ifdef LINSOLVERS_RETAIN_MEMORY    {      if(buf) free(buf);      buf=NULL;      buf_sz=0;      return 1;    }#else      return 1; /* NOP */#endif /* LINSOLVERS_RETAIN_MEMORY */       /* calculate required memory size */    a_sz=m*m;    qtb_sz=m;    tau_sz=m;    r_sz=m*m; /* only the upper triangular part really needed */    if(!nb){      LM_REAL tmp;      worksz=-1; // workspace query; optimal size is returned in tmp      GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info);      nb=((int)tmp)/m; // optimal worksize is m*nb    }    worksz=nb*m;    tot_sz=a_sz + qtb_sz + tau_sz + r_sz + worksz;#ifdef LINSOLVERS_RETAIN_MEMORY    if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */      if(buf) free(buf); /* free previously allocated memory */      buf_sz=tot_sz;      buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));      if(!buf){        fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n");        exit(1);      }    }#else      buf_sz=tot_sz;      buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));      if(!buf){        fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n");        exit(1);      }#endif /* LINSOLVERS_RETAIN_MEMORY */    a=buf;    qtb=a+a_sz;    tau=qtb+qtb_sz;    r=tau+tau_sz;    work=r+r_sz;  /* store A (column major!) into a */	for(i=0; i<m; i++)		for(j=0; j<m; j++)			a[i+j*m]=A[i*m+j];  /* QR decomposition of A */  GEQRF((int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);  /* error treatment */  if(info!=0){    if(info<0){      fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QR) "()\n", -info);      exit(1);    }    else{      fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QR) "()\n", info);#ifndef LINSOLVERS_RETAIN_MEMORY      free(buf);#endif      return 0;    }  }  /* R is stored in the upper triangular part of a; copy it in r so that ORGQR() below won't destroy it */   for(i=0; i<r_sz; i++)    r[i]=a[i];  /* compute Q using the elementary reflectors computed by the above decomposition */  ORGQR((int *)&m, (int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);  if(info!=0){    if(info<0){      fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", ORGQR) " in ", AX_EQ_B_QR) "()\n", -info);      exit(1);    }    else{      fprintf(stderr, RCAT("Unknown LAPACK error (%d) in ", AX_EQ_B_QR) "()\n", info);#ifndef LINSOLVERS_RETAIN_MEMORY      free(buf);#endif      return 0;    }  }  /* Q is now in a; compute Q^T b in qtb */  for(i=0; i<m; i++){    for(j=0, sum=0.0; j<m; j++)      sum+=a[i*m+j]*B[j];    qtb[i]=sum;  }  /* solve the linear system R x = Q^t b */  TRTRS("U", "N", "N", (int *)&m, (int *)&nrhs, r, (int *)&m, qtb, (int *)&m, &info);  /* error treatment */  if(info!=0){    if(info<0){      fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QR) "()\n", -info);      exit(1);    }    else{      fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QR) "()\n", info);#ifndef LINSOLVERS_RETAIN_MEMORY      free(buf);#endif      return 0;    }  }	/* copy the result in x */	for(i=0; i<m; i++)    x[i]=qtb[i];#ifndef LINSOLVERS_RETAIN_MEMORY  free(buf);#endif	return 1;}/* * This function returns the solution of min_x ||Ax - b|| * * || . || is the second order (i.e. L2) norm. This is a least squares technique that * is based on QR decomposition: * If A=Q R with Q orthogonal and R upper triangular, the normal equations become * (A^T A) x = A^T b  or (R^T Q^T Q R) x = A^T b or (R^T R) x = A^T b. * This amounts to solving R^T y = A^T b for y and then R x = y for x * Note that Q does not need to be explicitly computed * * A is mxn, b is mx1 * * The function returns 0 in case of error, 1 if successful * * This function is often called repetitively to solve problems of identical * dimensions. To avoid repetitive malloc's and free's, allocated memory is * retained between calls and free'd-malloc'ed when not of the appropriate size. * A call with NULL as the first argument forces this memory to be released. */int AX_EQ_B_QRLS(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m, int n){__STATIC__ LM_REAL *buf=NULL;__STATIC__ int buf_sz=0;static int nb=0; /* no __STATIC__ decl. here! */LM_REAL *a, *atb, *tau, *r, *work;int a_sz, atb_sz, tau_sz, r_sz, tot_sz;register int i, j;int info, worksz, nrhs=1;register LM_REAL sum;       if(!A)#ifdef LINSOLVERS_RETAIN_MEMORY    {      if(buf) free(buf);      buf=NULL;      buf_sz=0;      return 1;    }#else      return 1; /* NOP */#endif /* LINSOLVERS_RETAIN_MEMORY */       if(m<n){		  fprintf(stderr, RCAT("Normal equations require that the number of rows is greater than number of columns in ", AX_EQ_B_QRLS) "() [%d x %d]! -- try transposing\n", m, n);		  exit(1);	  }          /* calculate required memory size */    a_sz=m*n;    atb_sz=n;    tau_sz=n;    r_sz=n*n;    if(!nb){      LM_REAL tmp;      worksz=-1; // workspace query; optimal size is returned in tmp      GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info);      nb=((int)tmp)/m; // optimal worksize is m*nb    }    worksz=nb*m;    tot_sz=a_sz + atb_sz + tau_sz + r_sz + worksz;#ifdef LINSOLVERS_RETAIN_MEMORY    if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */      if(buf) free(buf); /* free previously allocated memory */      buf_sz=tot_sz;      buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));      if(!buf){        fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n");        exit(1);      }    }#else      buf_sz=tot_sz;      buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));      if(!buf){        fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n");        exit(1);      }#endif /* LINSOLVERS_RETAIN_MEMORY */    a=buf;    atb=a+a_sz;    tau=atb+atb_sz;    r=tau+tau_sz;    work=r+r_sz;  /* store A (column major!) into a */	for(i=0; i<m; i++)		for(j=0; j<n; j++)			a[i+j*m]=A[i*n+j];  /* compute A^T b in atb */  for(i=0; i<n; i++){    for(j=0, sum=0.0; j<m; j++)      sum+=A[j*n+i]*B[j];    atb[i]=sum;  }  /* QR decomposition of A */  GEQRF((int *)&m, (int *)&n, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);  /* error treatment */  if(info!=0){    if(info<0){      fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", -info);      exit(1);    }    else{      fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", info);#ifndef LINSOLVERS_RETAIN_MEMORY      free(buf);#endif      return 0;    }  }  /* R is stored in the upper triangular part of a. Note that a is mxn while r nxn */  for(j=0; j<n; j++){    for(i=0; i<=j; i++)      r[i+j*n]=a[i+j*m];    /* lower part is zero */    for(i=j+1; i<n; i++)      r[i+j*n]=0.0;  }  /* solve the linear system R^T y = A^t b */  TRTRS("U", "T", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, atb, (int *)&n, &info);  /* error treatment */  if(info!=0){    if(info<0){      fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info);      exit(1);    }    else{      fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info);#ifndef LINSOLVERS_RETAIN_MEMORY      free(buf);#endif      return 0;    }  }  /* solve the linear system R x = y */  TRTRS("U", "N", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, atb, (int *)&n, &info);  /* error treatment */  if(info!=0){    if(info<0){      fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info);      exit(1);    }    else{      fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info);#ifndef LINSOLVERS_RETAIN_MEMORY      free(buf);#endif      return 0;    }  }	/* copy the result in x */	for(i=0; i<n; i++)    x[i]=atb[i];#ifndef LINSOLVERS_RETAIN_MEMORY  free(buf);#endif	return 1;}/* * This function returns the solution of Ax=b * * The function assumes that A is symmetric & postive definite and employs * the Cholesky decomposition: * If A=U^T U with U upper triangular, the system to be solved becomes * (U^T U) x = b * This amount to solving U^T y = b for y and then U x = y for x * * A is mxm, b is mx1 * * The function returns 0 in case of error, 1 if successful * * This function is often called repetitively to solve problems of identical * dimensions. To avoid repetitive malloc's and free's, allocated memory is * retained between calls and free'd-malloc'ed when not of the appropriate size. * A call with NULL as the first argument forces this memory to be released. */int AX_EQ_B_CHOL(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m){__STATIC__ LM_REAL *buf=NULL;__STATIC__ int buf_sz=0;LM_REAL *a, *b;int a_sz, b_sz, tot_sz;register int i;int info, nrhs=1;       if(!A)#ifdef LINSOLVERS_RETAIN_MEMORY    {      if(buf) free(buf);      buf=NULL;      buf_sz=0;      return 1;    }#else      return 1; /* NOP */#endif /* LINSOLVERS_RETAIN_MEMORY */       /* calculate required memory size */    a_sz=m*m;    b_sz=m;    tot_sz=a_sz + b_sz;#ifdef LINSOLVERS_RETAIN_MEMORY    if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */      if(buf) free(buf); /* free previously allocated memory */      buf_sz=tot_sz;      buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));      if(!buf){        fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n");        exit(1);      }    }#else      buf_sz=tot_sz;      buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));      if(!buf){        fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n");        exit(1);      }#endif /* LINSOLVERS_RETAIN_MEMORY */    a=buf;    b=a+a_sz;    /* store A into a anb B into b. A is assumed symmetric,     * hence no transposition is needed     */    for(i=0; i<m; i++){      a[i]=A[i];      b[i]=B[i];    }    for(i=m; i<m*m; i++)      a[i]=A[i];  /* Cholesky decomposition of A */  //POTF2("U", (int *)&m, a, (int *)&m, (int *)&info);  POTRF("U", (int *)&m, a, (int *)&m, (int *)&info);  /* error treatment */  if(info!=0){    if(info<0){      fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", POTF2) "/", POTRF) " in ",                      AX_EQ_B_CHOL) "()\n", -info);      exit(1);    }    else{      fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: the leading minor of order %d is not positive definite,\nthe factorization could not be completed for ", POTF2) "/", POTRF) " in ", AX_EQ_B_CHOL) "()\n", info);#ifndef LINSOLVERS_RETAIN_MEMORY      free(buf);#endif      return 0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -