📄 axb_core.c
字号:
/////////////////////////////////////////////////////////////////////////////////// // Solution of linear systems involved in the Levenberg - Marquardt// minimization algorithm// Copyright (C) 2004 Manolis Lourakis (lourakis at ics forth gr)// Institute of Computer Science, Foundation for Research & Technology - Hellas// Heraklion, Crete, Greece.//// This program is free software; you can redistribute it and/or modify// it under the terms of the GNU General Public License as published by// the Free Software Foundation; either version 2 of the License, or// (at your option) any later version.//// This program is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.////////////////////////////////////////////////////////////////////////////////////* Solvers for the linear systems Ax=b. Solvers should NOT modify their A & B arguments! */#ifndef LM_REAL // not included by Axb.c#error This file should not be compiled directly!#endif#ifdef LINSOLVERS_RETAIN_MEMORY#define __STATIC__ static#else#define __STATIC__ // empty#endif /* LINSOLVERS_RETAIN_MEMORY */#ifdef HAVE_LAPACK/* prototypes of LAPACK routines */#define GEQRF LM_MK_LAPACK_NAME(geqrf)#define ORGQR LM_MK_LAPACK_NAME(orgqr)#define TRTRS LM_MK_LAPACK_NAME(trtrs)#define POTF2 LM_MK_LAPACK_NAME(potf2)#define POTRF LM_MK_LAPACK_NAME(potrf)#define POTRS LM_MK_LAPACK_NAME(potrs)#define GETRF LM_MK_LAPACK_NAME(getrf)#define GETRS LM_MK_LAPACK_NAME(getrs)#define GESVD LM_MK_LAPACK_NAME(gesvd)#define GESDD LM_MK_LAPACK_NAME(gesdd)/* QR decomposition */extern int GEQRF(int *m, int *n, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info);extern int ORGQR(int *m, int *n, int *k, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info);/* solution of triangular systems */extern int TRTRS(char *uplo, char *trans, char *diag, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info);/* Cholesky decomposition and systems solution */extern int POTF2(char *uplo, int *n, LM_REAL *a, int *lda, int *info);extern int POTRF(char *uplo, int *n, LM_REAL *a, int *lda, int *info); /* block version of dpotf2 */extern int POTRS(char *uplo, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info);/* LU decomposition and systems solution */extern int GETRF(int *m, int *n, LM_REAL *a, int *lda, int *ipiv, int *info);extern int GETRS(char *trans, int *n, int *nrhs, LM_REAL *a, int *lda, int *ipiv, LM_REAL *b, int *ldb, int *info);/* Singular Value Decomposition (SVD) */extern int GESVD(char *jobu, char *jobvt, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *info);/* lapack 3.0 new SVD routine, faster than xgesvd(). * In case that your version of LAPACK does not include them, use the above two older routines */extern int GESDD(char *jobz, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *iwork, int *info);/* precision-specific definitions */#define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)#define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)#define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)#define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)/* * This function returns the solution of Ax = b * * The function is based on QR decomposition with explicit computation of Q: * If A=Q R with Q orthogonal and R upper triangular, the linear system becomes * Q R x = b or R x = Q^T b. * The last equation can be solved directly. * * A is mxm, b is mx1 * * The function returns 0 in case of error, 1 if successful * * This function is often called repetitively to solve problems of identical * dimensions. To avoid repetitive malloc's and free's, allocated memory is * retained between calls and free'd-malloc'ed when not of the appropriate size. * A call with NULL as the first argument forces this memory to be released. */int AX_EQ_B_QR(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m){__STATIC__ LM_REAL *buf=NULL;__STATIC__ int buf_sz=0;static int nb=0; /* no __STATIC__ decl. here! */LM_REAL *a, *qtb, *tau, *r, *work;int a_sz, qtb_sz, tau_sz, r_sz, tot_sz;register int i, j;int info, worksz, nrhs=1;register LM_REAL sum; if(!A)#ifdef LINSOLVERS_RETAIN_MEMORY { if(buf) free(buf); buf=NULL; buf_sz=0; return 1; }#else return 1; /* NOP */#endif /* LINSOLVERS_RETAIN_MEMORY */ /* calculate required memory size */ a_sz=m*m; qtb_sz=m; tau_sz=m; r_sz=m*m; /* only the upper triangular part really needed */ if(!nb){ LM_REAL tmp; worksz=-1; // workspace query; optimal size is returned in tmp GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info); nb=((int)tmp)/m; // optimal worksize is m*nb } worksz=nb*m; tot_sz=a_sz + qtb_sz + tau_sz + r_sz + worksz;#ifdef LINSOLVERS_RETAIN_MEMORY if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */ if(buf) free(buf); /* free previously allocated memory */ buf_sz=tot_sz; buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL)); if(!buf){ fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n"); exit(1); } }#else buf_sz=tot_sz; buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL)); if(!buf){ fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n"); exit(1); }#endif /* LINSOLVERS_RETAIN_MEMORY */ a=buf; qtb=a+a_sz; tau=qtb+qtb_sz; r=tau+tau_sz; work=r+r_sz; /* store A (column major!) into a */ for(i=0; i<m; i++) for(j=0; j<m; j++) a[i+j*m]=A[i*m+j]; /* QR decomposition of A */ GEQRF((int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info); /* error treatment */ if(info!=0){ if(info<0){ fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QR) "()\n", -info); exit(1); } else{ fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QR) "()\n", info);#ifndef LINSOLVERS_RETAIN_MEMORY free(buf);#endif return 0; } } /* R is stored in the upper triangular part of a; copy it in r so that ORGQR() below won't destroy it */ for(i=0; i<r_sz; i++) r[i]=a[i]; /* compute Q using the elementary reflectors computed by the above decomposition */ ORGQR((int *)&m, (int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info); if(info!=0){ if(info<0){ fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", ORGQR) " in ", AX_EQ_B_QR) "()\n", -info); exit(1); } else{ fprintf(stderr, RCAT("Unknown LAPACK error (%d) in ", AX_EQ_B_QR) "()\n", info);#ifndef LINSOLVERS_RETAIN_MEMORY free(buf);#endif return 0; } } /* Q is now in a; compute Q^T b in qtb */ for(i=0; i<m; i++){ for(j=0, sum=0.0; j<m; j++) sum+=a[i*m+j]*B[j]; qtb[i]=sum; } /* solve the linear system R x = Q^t b */ TRTRS("U", "N", "N", (int *)&m, (int *)&nrhs, r, (int *)&m, qtb, (int *)&m, &info); /* error treatment */ if(info!=0){ if(info<0){ fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QR) "()\n", -info); exit(1); } else{ fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QR) "()\n", info);#ifndef LINSOLVERS_RETAIN_MEMORY free(buf);#endif return 0; } } /* copy the result in x */ for(i=0; i<m; i++) x[i]=qtb[i];#ifndef LINSOLVERS_RETAIN_MEMORY free(buf);#endif return 1;}/* * This function returns the solution of min_x ||Ax - b|| * * || . || is the second order (i.e. L2) norm. This is a least squares technique that * is based on QR decomposition: * If A=Q R with Q orthogonal and R upper triangular, the normal equations become * (A^T A) x = A^T b or (R^T Q^T Q R) x = A^T b or (R^T R) x = A^T b. * This amounts to solving R^T y = A^T b for y and then R x = y for x * Note that Q does not need to be explicitly computed * * A is mxn, b is mx1 * * The function returns 0 in case of error, 1 if successful * * This function is often called repetitively to solve problems of identical * dimensions. To avoid repetitive malloc's and free's, allocated memory is * retained between calls and free'd-malloc'ed when not of the appropriate size. * A call with NULL as the first argument forces this memory to be released. */int AX_EQ_B_QRLS(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m, int n){__STATIC__ LM_REAL *buf=NULL;__STATIC__ int buf_sz=0;static int nb=0; /* no __STATIC__ decl. here! */LM_REAL *a, *atb, *tau, *r, *work;int a_sz, atb_sz, tau_sz, r_sz, tot_sz;register int i, j;int info, worksz, nrhs=1;register LM_REAL sum; if(!A)#ifdef LINSOLVERS_RETAIN_MEMORY { if(buf) free(buf); buf=NULL; buf_sz=0; return 1; }#else return 1; /* NOP */#endif /* LINSOLVERS_RETAIN_MEMORY */ if(m<n){ fprintf(stderr, RCAT("Normal equations require that the number of rows is greater than number of columns in ", AX_EQ_B_QRLS) "() [%d x %d]! -- try transposing\n", m, n); exit(1); } /* calculate required memory size */ a_sz=m*n; atb_sz=n; tau_sz=n; r_sz=n*n; if(!nb){ LM_REAL tmp; worksz=-1; // workspace query; optimal size is returned in tmp GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info); nb=((int)tmp)/m; // optimal worksize is m*nb } worksz=nb*m; tot_sz=a_sz + atb_sz + tau_sz + r_sz + worksz;#ifdef LINSOLVERS_RETAIN_MEMORY if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */ if(buf) free(buf); /* free previously allocated memory */ buf_sz=tot_sz; buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL)); if(!buf){ fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n"); exit(1); } }#else buf_sz=tot_sz; buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL)); if(!buf){ fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n"); exit(1); }#endif /* LINSOLVERS_RETAIN_MEMORY */ a=buf; atb=a+a_sz; tau=atb+atb_sz; r=tau+tau_sz; work=r+r_sz; /* store A (column major!) into a */ for(i=0; i<m; i++) for(j=0; j<n; j++) a[i+j*m]=A[i*n+j]; /* compute A^T b in atb */ for(i=0; i<n; i++){ for(j=0, sum=0.0; j<m; j++) sum+=A[j*n+i]*B[j]; atb[i]=sum; } /* QR decomposition of A */ GEQRF((int *)&m, (int *)&n, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info); /* error treatment */ if(info!=0){ if(info<0){ fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", -info); exit(1); } else{ fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", info);#ifndef LINSOLVERS_RETAIN_MEMORY free(buf);#endif return 0; } } /* R is stored in the upper triangular part of a. Note that a is mxn while r nxn */ for(j=0; j<n; j++){ for(i=0; i<=j; i++) r[i+j*n]=a[i+j*m]; /* lower part is zero */ for(i=j+1; i<n; i++) r[i+j*n]=0.0; } /* solve the linear system R^T y = A^t b */ TRTRS("U", "T", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, atb, (int *)&n, &info); /* error treatment */ if(info!=0){ if(info<0){ fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info); exit(1); } else{ fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info);#ifndef LINSOLVERS_RETAIN_MEMORY free(buf);#endif return 0; } } /* solve the linear system R x = y */ TRTRS("U", "N", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, atb, (int *)&n, &info); /* error treatment */ if(info!=0){ if(info<0){ fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info); exit(1); } else{ fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info);#ifndef LINSOLVERS_RETAIN_MEMORY free(buf);#endif return 0; } } /* copy the result in x */ for(i=0; i<n; i++) x[i]=atb[i];#ifndef LINSOLVERS_RETAIN_MEMORY free(buf);#endif return 1;}/* * This function returns the solution of Ax=b * * The function assumes that A is symmetric & postive definite and employs * the Cholesky decomposition: * If A=U^T U with U upper triangular, the system to be solved becomes * (U^T U) x = b * This amount to solving U^T y = b for y and then U x = y for x * * A is mxm, b is mx1 * * The function returns 0 in case of error, 1 if successful * * This function is often called repetitively to solve problems of identical * dimensions. To avoid repetitive malloc's and free's, allocated memory is * retained between calls and free'd-malloc'ed when not of the appropriate size. * A call with NULL as the first argument forces this memory to be released. */int AX_EQ_B_CHOL(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m){__STATIC__ LM_REAL *buf=NULL;__STATIC__ int buf_sz=0;LM_REAL *a, *b;int a_sz, b_sz, tot_sz;register int i;int info, nrhs=1; if(!A)#ifdef LINSOLVERS_RETAIN_MEMORY { if(buf) free(buf); buf=NULL; buf_sz=0; return 1; }#else return 1; /* NOP */#endif /* LINSOLVERS_RETAIN_MEMORY */ /* calculate required memory size */ a_sz=m*m; b_sz=m; tot_sz=a_sz + b_sz;#ifdef LINSOLVERS_RETAIN_MEMORY if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */ if(buf) free(buf); /* free previously allocated memory */ buf_sz=tot_sz; buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL)); if(!buf){ fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n"); exit(1); } }#else buf_sz=tot_sz; buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL)); if(!buf){ fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n"); exit(1); }#endif /* LINSOLVERS_RETAIN_MEMORY */ a=buf; b=a+a_sz; /* store A into a anb B into b. A is assumed symmetric, * hence no transposition is needed */ for(i=0; i<m; i++){ a[i]=A[i]; b[i]=B[i]; } for(i=m; i<m*m; i++) a[i]=A[i]; /* Cholesky decomposition of A */ //POTF2("U", (int *)&m, a, (int *)&m, (int *)&info); POTRF("U", (int *)&m, a, (int *)&m, (int *)&info); /* error treatment */ if(info!=0){ if(info<0){ fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", POTF2) "/", POTRF) " in ", AX_EQ_B_CHOL) "()\n", -info); exit(1); } else{ fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: the leading minor of order %d is not positive definite,\nthe factorization could not be completed for ", POTF2) "/", POTRF) " in ", AX_EQ_B_CHOL) "()\n", info);#ifndef LINSOLVERS_RETAIN_MEMORY free(buf);#endif return 0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -