⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lm_core.c

📁 A sparse variant of the Levenberg-Marquardt algorithm implemented by levmar has been applied to bund
💻 C
📖 第 1 页 / 共 2 页
字号:
}/* Secant version of the LEVMAR_DER() function above: the Jacobian is approximated with  * the aid of finite differences (forward or central, see the comment for the opts argument) */int LEVMAR_DIF(  void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */  LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */  LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */  int m,              /* I: parameter vector dimension (i.e. #unknowns) */  int n,              /* I: measurement vector dimension */  int itmax,          /* I: maximum number of iterations */  LM_REAL opts[5],    /* I: opts[0-4] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the                       * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and                       * the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used.                       * If \delta<0, the Jacobian is approximated with central differences which are more accurate                       * (but slower!) compared to the forward differences employed by default.                        */  LM_REAL info[LM_INFO_SZ],					           /* O: information regarding the minimization. Set to NULL if don't care                      * info[0]= ||e||_2 at initial p.                      * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.                      * info[5]= # iterations,                      * info[6]=reason for terminating: 1 - stopped by small gradient J^T e                      *                                 2 - stopped by small Dp                      *                                 3 - stopped by itmax                      *                                 4 - singular matrix. Restart from current p with increased mu                       *                                 5 - no further error reduction is possible. Restart with increased mu                      *                                 6 - stopped by small ||e||_2                      *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error                      * info[7]= # function evaluations                      * info[8]= # Jacobian evaluations                      * info[9]= # linear systems solved, i.e. # attempts for reducing error                      */  LM_REAL *work,     /* working memory at least LM_DIF_WORKSZ() reals large, allocated if NULL */  LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */  void *adata)       /* pointer to possibly additional data, passed uninterpreted to func.                      * Set to NULL if not needed                      */{register int i, j, k, l;int worksz, freework=0, issolved;/* temp work arrays */LM_REAL *e,          /* nx1 */       *hx,         /* \hat{x}_i, nx1 */       *jacTe,      /* J^T e_i mx1 */       *jac,        /* nxm */       *jacTjac,    /* mxm */       *Dp,         /* mx1 */   *diag_jacTjac,   /* diagonal of J^T J, mx1 */       *pDp,        /* p + Dp, mx1 */       *wrk,        /* nx1 */       *wrk2;       /* nx1, used only for holding a temporary e vector and when differentiating with central differences */int using_ffdif=1;register LM_REAL mu,  /* damping constant */                tmp; /* mainly used in matrix & vector multiplications */LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;LM_REAL tau, eps1, eps2, eps2_sq, eps3, delta;LM_REAL init_p_eL2;int nu, nu2, stop=0, nfev, njap=0, nlss=0, K=(m>=10)? m: 10, updjac, updp=1, newjac;const int nm=n*m;int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL;  mu=jacTe_inf=p_L2=0.0; /* -Wall */  updjac=newjac=0; /* -Wall */  if(n<m){    fprintf(stderr, LCAT(LEVMAR_DIF, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);    return LM_ERROR;  }  if(opts){	  tau=opts[0];	  eps1=opts[1];	  eps2=opts[2];	  eps2_sq=opts[2]*opts[2];    eps3=opts[3];	  delta=opts[4];    if(delta<0.0){      delta=-delta; /* make positive */      using_ffdif=0; /* use central differencing */    }  }  else{ // use default values	  tau=LM_CNST(LM_INIT_MU);	  eps1=LM_CNST(LM_STOP_THRESH);	  eps2=LM_CNST(LM_STOP_THRESH);	  eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH);    eps3=LM_CNST(LM_STOP_THRESH);	  delta=LM_CNST(LM_DIFF_DELTA);  }  if(!work){    worksz=LM_DIF_WORKSZ(m, n); //4*n+4*m + n*m + m*m;    work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */    if(!work){      fprintf(stderr, LCAT(LEVMAR_DIF, "(): memory allocation request failed\n"));      return LM_ERROR;    }    freework=1;  }  /* set up work arrays */  e=work;  hx=e + n;  jacTe=hx + n;  jac=jacTe + m;  jacTjac=jac + nm;  Dp=jacTjac + m*m;  diag_jacTjac=Dp + m;  pDp=diag_jacTjac + m;  wrk=pDp + m;  wrk2=wrk + n;  /* compute e=x - f(p) and its L2 norm */  (*func)(p, hx, m, n, adata); nfev=1;  /* ### e=x-hx, p_eL2=||e|| */#if 1  p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n);#else  for(i=0, p_eL2=0.0; i<n; ++i){    e[i]=tmp=x[i]-hx[i];    p_eL2+=tmp*tmp;  }#endif  init_p_eL2=p_eL2;  if(!LM_FINITE(p_eL2)) stop=7;  nu=20; /* force computation of J */  for(k=0; k<itmax && !stop; ++k){    /* Note that p and e have been updated at a previous iteration */    if(p_eL2<=eps3){ /* error is small */      stop=6;      break;    }    /* Compute the Jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2.     * The symmetry of J^T J is again exploited for speed     */    if((updp && nu>16) || updjac==K){ /* compute difference approximation to J */      if(using_ffdif){ /* use forward differences */        LEVMAR_FDIF_FORW_JAC_APPROX(func, p, hx, wrk, delta, jac, m, n, adata);        ++njap; nfev+=m;      }      else{ /* use central differences */        LEVMAR_FDIF_CENT_JAC_APPROX(func, p, wrk, wrk2, delta, jac, m, n, adata);        ++njap; nfev+=2*m;      }      nu=2; updjac=0; updp=0; newjac=1;    }    if(newjac){ /* Jacobian has changed, recompute J^T J, J^t e, etc */      newjac=0;      /* J^T J, J^T e */      if(nm<=__BLOCKSZ__SQ){ // this is a small problem        /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj.         * Thus, the product J^T J can be computed using an outer loop for         * l that adds J_li*J_lj to each element ij of the result. Note that         * with this scheme, the accesses to J and JtJ are always along rows,         * therefore induces less cache misses compared to the straightforward         * algorithm for computing the product (i.e., l loop is innermost one).         * A similar scheme applies to the computation of J^T e.         * However, for large minimization problems (i.e., involving a large number         * of unknowns and measurements) for which J/J^T J rows are too large to         * fit in the L1 cache, even this scheme incures many cache misses. In         * such cases, a cache-efficient blocking scheme is preferable.         *         * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this         * performance problem.         *         * Note that the non-blocking algorithm is faster on small         * problems since in this case it avoids the overheads of blocking.          */        register int l, im;        register LM_REAL alpha, *jaclm;        /* looping downwards saves a few computations */        for(i=m*m; i-->0; )          jacTjac[i]=0.0;        for(i=m; i-->0; )          jacTe[i]=0.0;        for(l=n; l-->0; ){          jaclm=jac+l*m;          for(i=m; i-->0; ){            im=i*m;            alpha=jaclm[i]; //jac[l*m+i];            for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */              jacTjac[im+j]+=jaclm[j]*alpha; //jac[l*m+j]            /* J^T e */            jacTe[i]+=alpha*e[l];          }        }        for(i=m; i-->0; ) /* copy to upper part */          for(j=i+1; j<m; ++j)            jacTjac[i*m+j]=jacTjac[j*m+i];      }      else{ // this is a large problem        /* Cache efficient computation of J^T J based on blocking         */        LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);        /* cache efficient computation of J^T e */        for(i=0; i<m; ++i)          jacTe[i]=0.0;        for(i=0; i<n; ++i){          register LM_REAL *jacrow;          for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)            jacTe[l]+=jacrow[l]*tmp;        }      }            /* Compute ||J^T e||_inf and ||p||^2 */      for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i){        if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;        diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */        p_L2+=p[i]*p[i];      }      //p_L2=sqrt(p_L2);    }#if 0if(!(k%100)){  printf("Current estimate: ");  for(i=0; i<m; ++i)    printf("%.9g ", p[i]);  printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2);}#endif    /* check for convergence */    if((jacTe_inf <= eps1)){      Dp_L2=0.0; /* no increment for p in this case */      stop=1;      break;    }   /* compute initial damping factor */    if(k==0){      for(i=0, tmp=LM_REAL_MIN; i<m; ++i)        if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */      mu=tau*tmp;    }    /* determine increment using adaptive damping */    /* augment normal equations */    for(i=0; i<m; ++i)      jacTjac[i*m+i]+=mu;    /* solve augmented equations */#ifdef HAVE_LAPACK    /* 5 alternatives are available: LU, Cholesky, 2 variants of QR decomposition and SVD.     * Cholesky is the fastest but might be inaccurate; QR is slower but more accurate;     * SVD is the slowest but most accurate; LU offers a tradeoff between accuracy and speed     */    issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;    //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL;    //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR;    //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS;    //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD;#else    /* use the LU included with levmar */    issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;#endif /* HAVE_LAPACK */    if(issolved){    /* compute p's new estimate and ||Dp||^2 */      for(i=0, Dp_L2=0.0; i<m; ++i){        pDp[i]=p[i] + (tmp=Dp[i]);        Dp_L2+=tmp*tmp;      }      //Dp_L2=sqrt(Dp_L2);      if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */      //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */        stop=2;        break;      }      if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */      //if(Dp_L2>=(p_L2+eps2)/LM_CNST(EPSILON)){ /* almost singular */        stop=4;        break;      }      (*func)(pDp, wrk, m, n, adata); ++nfev; /* evaluate function at p + Dp */      /* compute ||e(pDp)||_2 */      /* ### wrk2=x-wrk, pDp_eL2=||wrk2|| */#if 1      pDp_eL2=LEVMAR_L2NRMXMY(wrk2, x, wrk, n);#else      for(i=0, pDp_eL2=0.0; i<n; ++i){        wrk2[i]=tmp=x[i]-wrk[i];        pDp_eL2+=tmp*tmp;      }#endif      if(!LM_FINITE(pDp_eL2)){ /* sum of squares is not finite, most probably due to a user error.                                * This check makes sure that the loop terminates early in the case                                * of invalid input. Thanks to Steve Danauskas for suggesting it                                */        stop=7;        break;      }      dF=p_eL2-pDp_eL2;      if(updp || dF>0){ /* update jac */        for(i=0; i<n; ++i){          for(l=0, tmp=0.0; l<m; ++l)            tmp+=jac[i*m+l]*Dp[l]; /* (J * Dp)[i] */          tmp=(wrk[i] - hx[i] - tmp)/Dp_L2; /* (f(p+dp)[i] - f(p)[i] - (J * Dp)[i])/(dp^T*dp) */          for(j=0; j<m; ++j)            jac[i*m+j]+=tmp*Dp[j];        }        ++updjac;        newjac=1;      }      for(i=0, dL=0.0; i<m; ++i)        dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);      if(dL>0.0 && dF>0.0){ /* reduction in error, increment is accepted */        tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0));        tmp=LM_CNST(1.0)-tmp*tmp*tmp;        mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) );        nu=2;        for(i=0 ; i<m; ++i) /* update p's estimate */          p[i]=pDp[i];        for(i=0; i<n; ++i){ /* update e, hx and ||e||_2 */          e[i]=wrk2[i]; //x[i]-wrk[i];          hx[i]=wrk[i];        }        p_eL2=pDp_eL2;        updp=1;        continue;      }    }    /* if this point is reached, either the linear system could not be solved or     * the error did not reduce; in any case, the increment must be rejected     */    mu*=nu;    nu2=nu<<1; // 2*nu;    if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */      stop=5;      break;    }    nu=nu2;    for(i=0; i<m; ++i) /* restore diagonal J^T J entries */      jacTjac[i*m+i]=diag_jacTjac[i];  }  if(k>=itmax) stop=3;  for(i=0; i<m; ++i) /* restore diagonal J^T J entries */    jacTjac[i*m+i]=diag_jacTjac[i];  if(info){    info[0]=init_p_eL2;    info[1]=p_eL2;    info[2]=jacTe_inf;    info[3]=Dp_L2;    for(i=0, tmp=LM_REAL_MIN; i<m; ++i)      if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];    info[4]=mu/tmp;    info[5]=(LM_REAL)k;    info[6]=(LM_REAL)stop;    info[7]=(LM_REAL)nfev;    info[8]=(LM_REAL)njap;    info[9]=(LM_REAL)nlss;  }  /* covariance matrix */  if(covar){    LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);  }                                                                 if(freework) free(work);#ifdef LINSOLVERS_RETAIN_MEMORY  if(linsolver) (*linsolver)(NULL, NULL, NULL, 0);#endif  return (stop!=4 && stop!=7)?  k : LM_ERROR;}/* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */#undef LEVMAR_DER#undef LEVMAR_DIF#undef LEVMAR_FDIF_FORW_JAC_APPROX#undef LEVMAR_FDIF_CENT_JAC_APPROX#undef LEVMAR_COVAR#undef LEVMAR_TRANS_MAT_MAT_MULT#undef LEVMAR_L2NRMXMY#undef AX_EQ_B_LU#undef AX_EQ_B_CHOL#undef AX_EQ_B_QR#undef AX_EQ_B_QRLS#undef AX_EQ_B_SVD

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -