⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 programcu.cu

📁 SiftGPU is an implementation of SIFT [1] for GPU. SiftGPU processes pixels parallely to build Gaussi
💻 CU
📖 第 1 页 / 共 4 页
字号:
		float off =  0.5f * FDIV(next - pre, weight + weight - next - pre);
		key.w = radius_per_ten_degrees * (index_max + 0.5f + off);
		d_list[idx] = key;
	
	}else
	{
		float max_vote = vote[0];
#pragma unroll
		for(int i = 1; i < 36; ++i)		max_vote = max(max_vote, vote[i]);

		float vote_threshold = max_vote * 0.8f;
		float pre = vote[35];
		float max_rot[2], max_vot[2] = {0, 0};
		int  ocount = 0;
#pragma unroll
		for(int i =0; i < 36; ++i)
		{
			float next = vote[i + 1];
			if(vote[i] > vote_threshold && vote[i] > pre && vote[i] > next)
			{
				float di = 0.5f * FDIV(next - pre, vote[i] + vote[i] - next - pre);
				float rot = i + di + 0.5f;
				float weight = vote[i];
				///
				if(weight > max_vot[1])
				{
					if(weight > max_vot[0])
					{
						max_vot[1] = max_vot[0];
						max_rot[1] = max_rot[0];
						max_vot[0] = weight;
						max_rot[0] = rot;
					}
					else
					{
						max_vot[1] = weight;
						max_rot[1] = rot;
					}
					ocount ++;
				}
			}
			pre = vote[i];
		}
		float fr1 = max_rot[0] / 36.0f; 
		if(fr1 < 0) fr1 += 1.0f; 
		unsigned short us1 = ocount == 0? 65535 : ((unsigned short )floor(fr1 * 65535.0f));
		unsigned short us2 = 65535;
		if(ocount > 1)
		{
			float fr2 = max_rot[1] / 36.0f; 
			if(fr2 < 0) fr2 += 1.0f;
			us2 = (unsigned short ) floor(fr2 * 65535.0f);
		}
		unsigned int uspack = (us2 << 16) | us1;
		key.w = __int_as_float(uspack);
		d_list[idx] = key;
	}

}

void ProgramCU::ComputeOrientation(CuTexImage* list, CuTexImage* got, CuTexImage*key, 
								   float sigma, float sigma_step, int existing_keypoint)
{
	int len = list->GetImgWidth();
	if(len <= 0) return;
	int width = got->GetImgWidth(), height = got->GetImgHeight();
	if(existing_keypoint)
	{
		list->BindTexture(texDataF4);
	}else
	{
		list->BindTexture(texDataList);
		if(GlobalUtil::_SubpixelLocalization) key->BindTexture(texDataF4);
	}
	got->BindTexture2D(texDataF2);

	const int block_width = 64;
	dim3 grid((len + block_width -1) / block_width);
	dim3 block(block_width);

	ComputeOrientation_Kernel<<<grid, block>>>((float4*) list->_cuData, 
		len, width, height, sigma, sigma_step, 
		GlobalUtil::_OrientationGaussianFactor, 
		GlobalUtil::_OrientationGaussianFactor * GlobalUtil::_OrientationWindowFactor,
		GlobalUtil::_FixedOrientation? 0 : GlobalUtil::_MaxOrientation, 
		existing_keypoint, GlobalUtil::_SubpixelLocalization, GlobalUtil::_KeepExtremumSign);

	ProgramCU::CheckErrorCUDA("ComputeOrientation");
}

template <bool DYNAMIC_INDEXING> void __global__ ComputeDescriptor_Kernel(float4* d_des, int num, 
											 int width, int height, float window_factor)
{
	const float rpi = 4.0/ 3.14159265358979323846;
	int idx = IMUL(blockIdx.x, blockDim.x) + threadIdx.x;
	int fidx = idx >> 4;
	if(fidx >= num) return;
	float4 key = tex1Dfetch(texDataF4, fidx);
	int bidx = idx& 0xf, ix = bidx & 0x3, iy = bidx >> 2;
	float spt = fabs(key.z * window_factor);
	float s, c; __sincosf(key.w, &s, &c);
	float anglef = key.w > 3.14159265358979323846? key.w - (2.0 * 3.14159265358979323846) : key.w ; 
	float cspt = c * spt, sspt = s * spt;
	float crspt = c / spt, srspt = s / spt;
	float2 offsetpt, pt;
	float xmin, ymin, xmax, ymax, bsz;
	offsetpt.x = ix - 1.5f;
	offsetpt.y = iy - 1.5f;
	pt.x = cspt * offsetpt.x - sspt * offsetpt.y + key.x;
	pt.y = cspt * offsetpt.y + sspt * offsetpt.x + key.y;
	bsz =  fabs(cspt) + fabs(sspt);
	xmin = max(1.5f, floor(pt.x - bsz) + 0.5f);
	ymin = max(1.5f, floor(pt.y - bsz) + 0.5f);
	xmax = min(width - 1.5f, floor(pt.x + bsz) + 0.5f);
	ymax = min(height - 1.5f, floor(pt.y + bsz) + 0.5f);
	float des[9];
#pragma unroll
	for(int i =0; i < 9; ++i) des[i] = 0.0f;
	for(float y = ymin; y <= ymax; y += 1.0f)
	{
		for(float x = xmin; x <= xmax; x += 1.0f)
		{
			float dx = x - pt.x;
			float dy = y - pt.y;
			float nx = crspt * dx + srspt * dy;
			float ny = crspt * dy - srspt * dx;
			float nxn = fabs(nx);
			float nyn = fabs(ny);
			if(nxn < 1.0f && nyn < 1.0f)
			{
				float2 cc = tex2D(texDataF2, x, y);
				float dnx = nx + offsetpt.x;
				float dny = ny + offsetpt.y;
				float ww = exp(-0.125f * (dnx * dnx + dny * dny));
				float wx = 1.0 - nxn;
				float wy = 1.0 - nyn;
				float weight = ww * wx * wy * cc.x;
				float theta = (anglef - cc.y) * rpi;
				if(theta < 0) theta += 8.0f;
				float fo = floor(theta);
				int fidx = fo;
				float weight1 = fo + 1.0f  - theta;
				float weight2 = theta - fo;
				if(DYNAMIC_INDEXING)
				{
					des[fidx] += (weight1 * weight);
					des[fidx + 1] += (weight2 * weight);
					//this dynamic indexing part might be slow
				}else
				{
					#pragma unroll
					for(int k = 0; k < 8; ++k)
					{
						if(k == fidx) 
						{
							des[k] += (weight1 * weight);
							des[k+1] += (weight2 * weight);
						}
					}
				}
			}
		}
	}
	des[0] += des[8];

	int didx = idx << 1;
	d_des[didx] = make_float4(des[0], des[1], des[2], des[3]);
	d_des[didx+1] = make_float4(des[4], des[5], des[6], des[7]);
}


void __global__ NormalizeDescriptor_Kernel(float4* d_des, int num)
{
	float4 temp[32];
	int idx = IMUL(blockIdx.x, blockDim.x) + threadIdx.x;
	if(idx >= num) return;
	int sidx = idx << 5;
	float norm1 = 0, norm2 = 0;
#pragma unroll
	for(int i = 0; i < 32; ++i)
	{
		temp[i] = tex1Dfetch(texDataF4, sidx +i);
		norm1 += (temp[i].x * temp[i].x + temp[i].y * temp[i].y +
				 temp[i].z * temp[i].z + temp[i].w * temp[i].w);
	}
	norm1 = rsqrt(norm1);

#pragma unroll
	for(int i = 0; i < 32; ++i)
	{
		temp[i].x = min(0.2f, temp[i].x * norm1);
		temp[i].y = min(0.2f, temp[i].y * norm1);
		temp[i].z = min(0.2f, temp[i].z * norm1);
		temp[i].w = min(0.2f, temp[i].w * norm1);
		norm2 += (temp[i].x * temp[i].x + temp[i].y * temp[i].y +
				 temp[i].z * temp[i].z + temp[i].w * temp[i].w);
	}

	norm2 = rsqrt(norm2);
#pragma unroll
	for(int i = 0; i < 32; ++i)
	{
		temp[i].x *= norm2;		temp[i].y *= norm2;
		temp[i].z *= norm2;		temp[i].w *= norm2;
		d_des[sidx + i] = temp[i];
	}

}
void ProgramCU::ComputeDescriptor(CuTexImage*list, CuTexImage* got, CuTexImage* dtex)
{
	int num = list->GetImgWidth();
	int width = got->GetImgWidth();
	int height = got->GetImgHeight();

	dtex->InitTexture(num*128, 1, 1);
	got->BindTexture2D(texDataF2);
	list->BindTexture(texDataF4);


	int block_width = 64;
	dim3 grid((num * 16 + block_width -1) / block_width);
	dim3 block(block_width);

	if(GlobalUtil::_UseDynamicIndexing)
		ComputeDescriptor_Kernel<true><<<grid, block>>>((float4*) dtex->_cuData, num, width, height, GlobalUtil::_DescriptorWindowFactor);
	else
		ComputeDescriptor_Kernel<false><<<grid, block>>>((float4*) dtex->_cuData, num, width, height, GlobalUtil::_DescriptorWindowFactor);


	if(GlobalUtil::_NormalizedSIFT)
	{
		dtex->BindTexture(texDataF4);
		const int block_width = 32;
		dim3 grid((num + block_width -1) / block_width);
		dim3 block(block_width);
		NormalizeDescriptor_Kernel<<<grid, block>>>((float4*) dtex->_cuData, num);
	}

	CheckErrorCUDA("ComputeDescriptor");
}

//////////////////////////////////////////////////////
void ProgramCU::FinishCUDA()
{
	cudaThreadSynchronize();
}

void ProgramCU::CheckErrorCUDA(const char* location)
{
	cudaError_t e = cudaGetLastError();
	if(e)
	{
		if(location) std::cerr << location << ":\t";
		std::cerr << cudaGetErrorString(e) << endl;
	}
}

void __global__ ConvertDOG_Kernel(float* d_result, int width, int height)
{
	int row = (blockIdx.y << BLOCK_LOG_DIM) + threadIdx.y;
	int col = (blockIdx.x << BLOCK_LOG_DIM) + threadIdx.x;
	if(col < width && row < height)
	{
		int index = row * width  + col;
		float v = tex1Dfetch(texData, index);
		d_result[index] = (col == 0 || row == 0 || col == width -1 || row == height -1)?
			0.5 : saturate(0.5+20.0*v);
	}
}
///
void ProgramCU::DisplayConvertDOG(CuTexImage* dog, CuTexImage* out)
{
	if(out->_cuData == NULL) return;
	int width = dog->GetImgWidth(), height = dog ->GetImgHeight();
	dog->BindTexture(texData);
	dim3 grid((width + BLOCK_DIM - 1)/ BLOCK_DIM,  (height + BLOCK_DIM - 1)/BLOCK_DIM);
	dim3 block(BLOCK_DIM, BLOCK_DIM);
	ConvertDOG_Kernel<<<grid, block>>>((float*) out->_cuData, width, height);
	ProgramCU::CheckErrorCUDA("DisplayConvertDOG");
}

void __global__ ConvertGRD_Kernel(float* d_result, int width, int height)
{
	int row = (blockIdx.y << BLOCK_LOG_DIM) + threadIdx.y;
	int col = (blockIdx.x << BLOCK_LOG_DIM) + threadIdx.x;
	if(col < width && row < height)
	{
		int index = row * width  + col;
		float v = tex1Dfetch(texData, index << 1);
		d_result[index] = (col == 0 || row == 0 || col == width -1 || row == height -1)?
				0 : saturate(5 * v);

	}
}


void ProgramCU::DisplayConvertGRD(CuTexImage* got, CuTexImage* out)
{
	if(out->_cuData == NULL) return;
	int width = got->GetImgWidth(), height = got ->GetImgHeight();
	got->BindTexture(texData);
	dim3 grid((width + BLOCK_DIM - 1)/ BLOCK_DIM,  (height + BLOCK_DIM - 1)/BLOCK_DIM);
	dim3 block(BLOCK_DIM, BLOCK_DIM);
	ConvertGRD_Kernel<<<grid, block>>>((float*) out->_cuData, width, height);
	ProgramCU::CheckErrorCUDA("DisplayConvertGRD");
}

void __global__ ConvertKEY_Kernel(float4* d_result, int width, int height)
{

	int row = (blockIdx.y << BLOCK_LOG_DIM) + threadIdx.y;
	int col = (blockIdx.x << BLOCK_LOG_DIM) + threadIdx.x;
	if(col < width && row < height)
	{
		int index = row * width + col;
		float4 keyv = tex1Dfetch(texDataF4, index);
		int is_key = (keyv.x == 1.0f || keyv.x == -1.0f); 
		int inside = col > 0 && row > 0 && row < height -1 && col < width - 1;
		float v = inside? saturate(0.5 + 20 * tex1Dfetch(texData, index)) : 0.5;
		d_result[index] = is_key && inside ? 
			(keyv.x > 0? make_float4(1.0f, 0, 0, 1.0f) : make_float4(0.0f, 1.0f, 0.0f, 1.0f)): 
			make_float4(v, v, v, 1.0f) ;
	}
}
void ProgramCU::DisplayConvertKEY(CuTexImage* key, CuTexImage* dog, CuTexImage* out)
{
	if(out->_cuData == NULL) return;
	int width = key->GetImgWidth(), height = key ->GetImgHeight();
	dog->BindTexture(texData);
	key->BindTexture(texDataF4);
	dim3 grid((width + BLOCK_DIM - 1)/ BLOCK_DIM,  (height + BLOCK_DIM - 1)/BLOCK_DIM);
	dim3 block(BLOCK_DIM, BLOCK_DIM);
	ConvertKEY_Kernel<<<grid, block>>>((float4*) out->_cuData, width, height);
}


void __global__ DisplayKeyPoint_Kernel(float4 * d_result, int num)
{
	int idx = IMUL(blockIdx.x, blockDim.x) + threadIdx.x;
	if(idx >= num) return;
	float4 v = tex1Dfetch(texDataF4, idx);
	d_result[idx] = make_float4(v.x, v.y, 0, 1.0f);
}

void ProgramCU::DisplayKeyPoint(CuTexImage* ftex, CuTexImage* out)
{
	int num = ftex->GetImgWidth();
	int block_width = 64;
	dim3 grid((num + block_width -1) /block_width);
	dim3 block(block_width);
	ftex->BindTexture(texDataF4);
	DisplayKeyPoint_Kernel<<<grid, block>>>((float4*) out->_cuData, num);
	ProgramCU::CheckErrorCUDA("DisplayKeyPoint");
}

void __global__ DisplayKeyBox_Kernel(float4* d_result, int num)
{
	int idx = IMUL(blockIdx.x, blockDim.x) + threadIdx.x;
	if(idx >= num) return;
	int  kidx = idx / 10, vidx = idx - IMUL(kidx , 10);
	float4 v = tex1Dfetch(texDataF4, kidx);
	float sz = fabs(v.z * 3.0f);
	///////////////////////
	float s, c;	__sincosf(v.w, &s, &c);
	///////////////////////
	float dx = vidx == 0? 0 : ((vidx <= 4 || vidx >= 9)? sz : -sz);
	float dy = vidx <= 1? 0 : ((vidx <= 2 || vidx >= 7)? -sz : sz);
	float4 pos;
	pos.x = v.x + c * dx - s * dy;
	pos.y = v.y + c * dy + s * dx;
	pos.z = 0;	pos.w = 1.0f;
	d_result[idx]  = pos;
}

void ProgramCU::DisplayKeyBox(CuTexImage* ftex, CuTexImage* out)
{
	int len = ftex->GetImgWidth();
	int block_width = 32;
	dim3 grid((len * 10 + block_width -1) / block_width);
	dim3 block(block_width);
	ftex->BindTexture(texDataF4);
	DisplayKeyBox_Kernel<<<grid, block>>>((float4*) out->_cuData, len * 10);
}
///////////////////////////////////////////////////////////////////
inline void CuTexImage:: BindTexture(textureReference& texRef)
{
	 cudaBindTexture(NULL, &texRef, _cuData, &texRef.channelDesc, _numBytes);
}

inline void CuTexImage::BindTexture2D(textureReference& texRef)
{
	cudaChannelFormatDesc desc;
	cudaGetChannelDesc(&desc, _cuData2D);
	cudaBindTextureToArray(&texRef, _cuData2D, &desc);
}

int ProgramCU::IsCudaSupported()
{
	int deviceCount;
	cudaGetDeviceCount(&deviceCount);
	return deviceCount;
}

////////////////////////////////////////////////////////////////////////////////////////
// siftmatch funtions

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -