📄 simplesift.cpp
字号:
////////////////////////////////////////////////////////////////////////////
// File: SimpleSIFT.cpp
// Author: Changchang Wu
// Description : A simple example shows how to use SiftGPU and SiftMatchGPU
//
//
//
// Copyright (c) 2007 University of North Carolina at Chapel Hill
// All Rights Reserved
//
// Permission to use, copy, modify and distribute this software and its
// documentation for educational, research and non-profit purposes, without
// fee, and without a written agreement is hereby granted, provided that the
// above copyright notice and the following paragraph appear in all copies.
//
// The University of North Carolina at Chapel Hill make no representations
// about the suitability of this software for any purpose. It is provided
// 'as is' without express or implied warranty.
//
// Please send BUG REPORTS to ccwu@cs.unc.edu
//
////////////////////////////////////////////////////////////////////////////
#include <stdlib.h>
#include <vector>
#include <iostream>
using std::vector;
using std::iostream;
//Load at runtime if defined
#define SIFTGPU_DLL_RUNTIME
#ifdef _WIN32
#ifdef SIFTGPU_DLL_RUNTIME
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#else
//dll import definition for win32
#define SIFTGPU_DLL
#ifdef _DEBUG
#pragma comment(lib, "../lib/siftgpu_d.lib")
#else
#pragma comment(lib, "../lib/siftgpu.lib")
#endif
#endif
#else
#ifdef SIFTGPU_DLL_RUNTIME
#include <dlfcn.h>
#endif
#endif
#include "../../SiftGPU/src/SiftGPU.h"
int main()
{
#ifdef SIFTGPU_DLL_RUNTIME
SiftGPU* (*pCreateNewSiftGPU)(int) = NULL;
SiftMatchGPU* (*pCreateNewSiftMatchGPU)(int) = NULL;
#ifdef _WIN32
#ifdef _DEBUG
HMODULE hsiftgpu = LoadLibrary("siftgpu_d.dll");
#else
HMODULE hsiftgpu = LoadLibrary("siftgpu.dll");
#endif
if(hsiftgpu == NULL) return 0;
pCreateNewSiftGPU = (SiftGPU* (*) (int)) GetProcAddress(hsiftgpu, "CreateNewSiftGPU");
pCreateNewSiftMatchGPU = (SiftMatchGPU* (*)(int)) GetProcAddress(hsiftgpu, "CreateNewSiftMatchGPU");
#else
void * hsiftgpu = dlopen("libsiftgpu.so", RTLD_LAZY);
if(hsiftgpu == NULL) return 0;
pCreateNewSiftGPU = (SiftGPU* (*) (int)) dlsym(hsiftgpu, "CreateNewSiftGPU");
pCreateNewSiftMatchGPU = (SiftMatchGPU* (*)(int)) dlsym(hsiftgpu, "CreateNewSiftMatchGPU");
#endif
SiftGPU* sift = pCreateNewSiftGPU(1);
SiftMatchGPU* matcher = pCreateNewSiftMatchGPU(4096);
#else
//this will use overloaded new operators
SiftGPU *sift = new SiftGPU;
SiftMatchGPU *matcher = new SiftMatchGPU(4096);
#endif
vector<float > descriptors1, descriptors2;
vector<SiftGPU::SiftKeypoint> keys1, keys2;
int num1, num2;
//process parameters
//The following parameters are now default in V340
//-m, up to 2 orientations for each feature (change to single orientation by using -m 1)
//-s enable subpixel subscale (disable by using -s 0)
//-pack use packed implementation (use the old unpacked version by using -unpack)
//-glsl use GLSL instead of CG
char * argv[] = {"-fo", "-1", "-v", "1"};//
//-fo -1 staring from -1 octave
//-v 1 only print out # feature and overall time
//-loweo add a (.5, .5) offset
//***If GLSL has problems or works slow, you can switch back to CG using "-cg" ***/
//////////////////////////////////////////////////////////////////////////////////////
//You can select a different shader for nVidia graphic cards by using
//-cg : Use CG insted of GLSL
//-cuda : cuda implementation (fastest for smaller images)
/////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////
////////////////////////Two Important Parameters///////////////////////////
// First, texture reallocation happens when image size increases, and too many
// reallocation may lead to allocatoin failure. You should be careful when using
// siftgpu on a set of images with VARYING imag sizes. It is recommended that you
// preset the allocation size to the largest width and largest height by using function
// AllocationPyramid or prameter '-p' (e.g. "-p", "1024x768").
// Second, there is a parameter you may not be aware of, the allowed maximum working
// dimension. All the SIFT octaves that needs a larger texture size will be skipped.
// The default prameter is 2560 for the unpacked implementation and 3200 for the packed.
// Those two default parameter is tuned to for 768MB of graphic memory. You should adjust
// it for your own GPU memory. You can also use this to keep/skip the small featuers.
// To change this, call function SetMaxDimension or use parameter "-maxd".
//////////////////////////////////////////////////////////////////////////////////////
int argc = sizeof(argv)/sizeof(char*);
sift->ParseParam(argc, argv);
///////////////////////////////////////////////////////////////////////
//Only the following parameters can be changed after initialization (by calling ParseParam).
//-dw, -ofix, -ofix-not, -fo, -unn, -maxd, -b
//to change other parameters at runtime, you need to first unload the dynamically loaded libaray
//reload the libarary, then create a new siftgpu instance
//create an OpenGL context for computation, and SiftGPU will be initialized automatically
if(sift->CreateContextGL() != SiftGPU::SIFTGPU_FULL_SUPPORTED) return 0;
////******************----Manage openGL contex yourself----***************************
//if you prefer to create openGL contexts yourself or you are mixing siftgpu with other
//openGL code, you'll need to call sift->VerifyContextGL() instead. You have to make sure
//that you activate the OpenGL context (WglMakeCurrent in win32), and have GL_FILL polygon mode
//before calling the siftgpu functions. Check GLTestWnd::glCreateRC for win32 example
///////////////////////////////////////////////////////////////////////////////////////////////
//1. Note that GL_TEXTURE_RECTANGLE_ARB is always enabled in SiftGPU. When you have problem
//displaying textures, you can try first glDisable(GL_TEXTURE_RECTANGLE_ARB) before painting,
//but don't forget to call glEnable(GL_TEXTURE_RECTANGLE_ARB) after. (Thanks to Pilet)
///////////////////////////////////////////////////////////////////////////////////////////////
//2. Besides, SiftGPU also changes several other OpenGL states, including texture binding to
//GL_TEXTURE_RECTANGLE_ARB and current ViewPort. You might need to restore the viewport yourself.
//To avoid this, you can create a seperate OpenGL context for SiftGPU, and use another context
//for displaying.
if(sift->RunSIFT("../data/800-1.jpg"))
{
//Call SaveSIFT to save result to file, the format is the same as Lowe's
//sift->SaveSIFT("../data/800-1.sift"); //saving ASCII format is slow
//get feature count
num1 = sift->GetFeatureNum();
//allocate memory
keys1.resize(num1); descriptors1.resize(128*num1);
//reading back feature vectors is faster than writing files
//if you dont need keys or descriptors, just put NULLs here
sift->GetFeatureVector(&keys1[0], &descriptors1[0]);
//this can be used to write your own sift file.
}
//you should create only one SiftGPU instance and reuse it on all the images
if(sift->RunSIFT("../data/640-1.jpg"))
{
num2 = sift->GetFeatureNum();
keys2.resize(num2); descriptors2.resize(128*num2);
sift->GetFeatureVector(&keys2[0], &descriptors2[0]);
}
//Testing code to check how it works when image size varies
//sift->RunSIFT("../data/256.jpg");sift->SaveSIFT("../data/256.sift.1");
//sift->RunSIFT("../data/1024.jpg"); //this will result in pyramid reallocation
//sift->RunSIFT("../data/256.jpg"); sift->SaveSIFT("../data/256.sift.2");
//two sets of features for 256.jpg may have different order due to implementation
//*************************************************************************
/////compute descriptors for user-specified keypoints (with or without orientations)
//Method1, set new keypoints for the image you've just processed with siftgpu
//say vector<SiftGPU::SiftKeypoint> mykeys;
//sift->RunSIFT(mykeys.size(), &mykeys[0]);
//sift->RunSIFT(num2, &keys2[0], 1); sift->SaveSIFT("../data/640-1.sift.2");
//sift->RunSIFT(num2, &keys2[0], 0); sift->SaveSIFT("../data/640-1.sift.3");
//Method2, set keypoints for the next coming image
//The difference of with method 1 is that method 1 skips gaussian filtering
//SiftGPU::SiftKeypoint mykeys[100];
//for(int i = 0; i < 100; ++i){
// mykeys[i].s = 1.0f;mykeys[i].o = 0.0f;
// mykeys[i].x = (i%10)*10.0f+50.0f;
// mykeys[i].y = (i/10)*10.0f+50.0f;
//}
//sift->SetKeypointList(100, mykeys, 0);
//sift->RunSIFT("../data/800-1.jpg");
//*********************************************************************************
//**********************GPU SIFT MATCHING*********************************
//**************************select shader language*************************
//SiftMatchGPU will use the same shader lanaguage as SiftGPU by default
//Before initialization, you can also choose between cg, glsl, and CUDA(if compiled).
//matcher->SetLanguage(SiftMatchGPU::SIFTMATCH_CUDA);
//Verify current OpenGL Context and initialize the Matcher;
//If you don't have an OpenGL Context, call matcher->CreateContextGL instead;
matcher->VerifyContextGL(); //must call once
//Set descriptors to match, the first argument must be either 0 or 1
//if you want to use more than 4096 or less than 4096
//call matcher->SetMaxSift() to change the limit before calling setdescriptor
matcher->SetDescriptors(0, num1, &descriptors1[0]); //image 1
matcher->SetDescriptors(1, num2, &descriptors2[0]); //image 2
//match and get result.
int (*match_buf)[2] = new int[num1][2];
//use the default thresholds. Check the declaration in SiftGPU.h
int num_match = matcher->GetSiftMatch(num1, match_buf);
std::cout << num_match << " sift matches were found;\n";
//enumerate all the feature matches
for(int i = 0; i < num_match; ++i)
{
SiftGPU::SiftKeypoint & key1 = keys1[match_buf[i][0]];
SiftGPU::SiftKeypoint & key2 = keys2[match_buf[i][1]];
//key1 in the first image matches with key2 in the second image
}
//*****************GPU Guided SIFT MATCHING***************
//define a homography, and use default threshold 32 to search in a 64x64 window
//float h[3][3] = {{0.8f, 0, 0}, {0, 0.8f, 0}, {0, 0, 1.0f}};
//matcher->SetFeatureLocation(0, &keys1[0]); //SetFeatureLocaiton after SetDescriptors
//matcher->SetFeatureLocation(1, &keys2[0]);
//num_match = matcher->GetGuidedSiftMatch(num1, match_buf, h, NULL);
//std::cout << num_match << " guided sift matches were found;\n";
// clean up..not necessary here..
delete[] match_buf;
delete sift;
delete matcher;
#ifdef SIFTGPU_DLL_RUNTIME
#ifdef _WIN32
FreeLibrary(hsiftgpu);
#else
dlclose(hsiftgpu);
#endif
#endif
return 1;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -