📄 block.c
字号:
PixelPos up; //!< pixel position p(0,-1)
PixelPos left[17]; //!< pixel positions p(-1, -1..15)
int up_avail, left_avail, left_up_avail;
int *mb_size = img->mb_size[IS_LUMA];
for (i=0;i<17;i++)
{
getNeighbour(currMB, -1, i-1, mb_size, &left[i]);
}
getNeighbour(currMB, 0, -1, mb_size, &up);
if (!(params->UseConstrainedIntraPred))
{
up_avail = up.available;
left_avail = left[1].available;
left_up_avail = left[0].available;
}
else
{
up_avail = up.available ? img->intra_block[up.mb_addr] : 0;
for (i=1, left_avail=1; i<17;i++)
left_avail &= left[i].available ? img->intra_block[left[i].mb_addr]: 0;
left_up_avail = left[0].available ? img->intra_block[left[0].mb_addr]: 0;
}
s1=s2=0;
// make DC prediction
if (up_avail)
{
for (i=up.pos_x; i < up.pos_x + MB_BLOCK_SIZE; i++)
s1 += img_enc[up.pos_y][i]; // sum hor pix
}
if (left_avail)
{
for (i=1; i < MB_BLOCK_SIZE + 1; i++)
s2 += img_enc[left[i].pos_y][left[i].pos_x]; // sum vert pix
}
if (up_avail)
{
s0= left_avail
? rshift_rnd_sf((s1+s2),(MB_BLOCK_SHIFT + 1)) // no edge
: rshift_rnd_sf(s1, MB_BLOCK_SHIFT); // left edge
}
else
{
s0=left_avail
? rshift_rnd_sf(s2, MB_BLOCK_SHIFT) // upper edge
: dc_pred_value; // top left corner, nothing to predict from
}
// vertical prediction
if (up_avail)
memcpy(s[0], &img_enc[up.pos_y][up.pos_x], MB_BLOCK_SIZE * sizeof(imgpel));
// horizontal prediction
if (left_avail)
{
for (i=1; i < MB_BLOCK_SIZE + 1; i++)
s[1][i - 1]=img_enc[left[i].pos_y][left[i].pos_x];
}
for (j=0; j < MB_BLOCK_SIZE; j++)
{
memcpy(curr_mpr_16x16[VERT_PRED_16][j], s[0], MB_BLOCK_SIZE * sizeof(imgpel)); // store vertical prediction
for (i=0; i < MB_BLOCK_SIZE; i++)
{
curr_mpr_16x16[HOR_PRED_16 ][j][i] = s[1][j]; // store horizontal prediction
curr_mpr_16x16[DC_PRED_16 ][j][i] = s0; // store DC prediction
}
}
if (!up_avail || !left_avail || !left_up_avail) // edge
return;
// 16 bit integer plan pred
ih=0;
iv=0;
for (i=1;i<9;i++)
{
if (i<8)
ih += i*(img_enc[up.pos_y][up.pos_x+7+i] - img_enc[up.pos_y][up.pos_x+7-i]);
else
ih += i*(img_enc[up.pos_y][up.pos_x+7+i] - img_enc[left[0].pos_y][left[0].pos_x]);
iv += i*(img_enc[left[8+i].pos_y][left[8+i].pos_x] - img_enc[left[8-i].pos_y][left[8-i].pos_x]);
}
ib=(5*ih+32)>>6;
ic=(5*iv+32)>>6;
iaa=16*(img_enc[up.pos_y][up.pos_x+15]+img_enc[left[16].pos_y][left[16].pos_x]);
for (j=0;j< MB_BLOCK_SIZE;j++)
{
for (i=0;i< MB_BLOCK_SIZE;i++)
{
curr_mpr_16x16[PLANE_16][j][i]= iClip1( img->max_imgpel_value, rshift_rnd_sf((iaa+(i-7)*ib +(j-7)*ic), 5));// store plane prediction
}
}
}
/*!
************************************************************************
* \brief
* For new intra pred routines
*
* \par Input:
* Image par, 16x16 based intra mode
*
* \par Output:
* none
************************************************************************
*/
int dct_16x16(Macroblock *currMB, ColorPlane pl, int new_intra_mode, int is_cavlc)
{
int i,j;
int ii,jj;
int ac_coef = 0;
static imgpel *img_Y, *predY;
int nonzero = FALSE;
int jpos, ipos;
int b8, b4;
//begin the changes
int pl_off = pl<<2;
int* DCLevel = img->cofDC[pl][0];
int* DCRun = img->cofDC[pl][1];
int ****cofAC = &img->cofAC[pl_off];
int* ACLevel;
int* ACRun;
int coeff_cost;
imgpel **img_enc = enc_picture->p_curr_img;
int max_imgpel_value = img->max_imgpel_value;
int qp = currMB->qp_scaled[pl];
const byte (*pos_scan)[2] = currMB->is_field_mode ? FIELD_SCAN : SNGL_SCAN;
imgpel (*curr_mpr_16x16)[MB_BLOCK_SIZE][MB_BLOCK_SIZE] = img->mpr_16x16[pl];
int qp_per = qp_per_matrix[qp];
int qp_rem = qp_rem_matrix[qp];
// select scaling parameters
levelscale = LevelScale4x4Comp[pl][1][qp_rem];
invlevelscale = InvLevelScale4x4Comp[pl][1][qp_rem];
leveloffset = ptLevelOffset4x4 [1][qp];
fadjust4x4 = img->AdaptiveRounding ? (pl ? &img->fadjust4x4Cr[pl-1][2][0] : &img->fadjust4x4[2][0]): NULL;
for (j = 0; j < 16; j++)
{
predY = curr_mpr_16x16[new_intra_mode][j];
img_Y = &pCurImg[img->opix_y + j][img->opix_x];
for (i = 0; i < 16; i++)
{
M1[j][i] = img_Y[i] - predY[i];
}
}
// forward 4x4 DCT
for (j = 0; j < 16; j+=4)
{
for (i = 0;i < 16; i+=4)
{
forward4x4(M1, M1, j, i);
}
}
// pick out DC coeff
for (j = 0; j < 4; j++)
for (i = 0; i < 4; i++)
M4[j][i]= M1[j << 2][i << 2];
// hadamard of DC coefficients
hadamard4x4(M4, M4);
nonzero = quant_dc4x4(&M4[0], qp, DCLevel, DCRun, levelscale[0][0], invlevelscale[0][0], leveloffset[0][0], pos_scan, is_cavlc);
// inverse DC transform
if (nonzero)
{
ihadamard4x4(M4, M4);
// Reset DC coefficients
for (j = 0; j < 4; j++)
{
for (i = 0; i<4;i++)
{
M1[j<<2][i<<2] = rshift_rnd_sf(((M4[j][i]) * invlevelscale[0][0]) << qp_per, 6);
}
}
}
else // All DC equal to 0.
{
for (j=0;j<4;j++)
{
for (i=0;i<4;i++)
{
M1[j<<2][i<<2] = 0;
}
}
}
// AC processing for MB
for (jj=0;jj<4;jj++)
{
jpos = (jj << 2);
for (ii=0;ii<4;ii++)
{
ipos = (ii << 2);
b8 = 2*(jj >> 1) + (ii >> 1);
b4 = 2*(jj & 0x01) + (ii & 0x01);
ACLevel = cofAC[b8][b4][0];
ACRun = cofAC[b8][b4][1];
img->subblock_y = jj;
img->subblock_x = ii;
// Quantization process
nonzero = quant_ac4x4(&M1[jpos], jpos, ipos, qp, ACLevel, ACRun, &fadjust4x4[jpos],
levelscale, invlevelscale, leveloffset, &coeff_cost, pos_scan, COEFF_COST4x4[params->disthres], LUMA_16AC, is_cavlc);
if (nonzero)
ac_coef = 15;
//IDCT
if (M1[jpos][ipos]!= 0 || nonzero)
inverse4x4(M1, M1, jpos, ipos);
}
}
// Reconstruct samples
SampleReconstruct (img_enc, curr_mpr_16x16[new_intra_mode], M1, 0, 0, img->pix_y, img->pix_x, 16, 16, max_imgpel_value, DQ_BITS);
if(img->type == SP_SLICE)
{
for (j = img->pix_y; j < img->pix_y + 16;j++)
for (i = img->pix_x; i < img->pix_x + 16;i++)
lrec[j][i]=-16; //signals an I16 block in the SP frame
}
return ac_coef;
}
/*!
************************************************************************
* \brief
* For new intra pred routines
*
* \par Input:
* Image par, 16x16 based intra mode
*
* \par Output:
* none
************************************************************************
*/
int dct_16x16_ls(Macroblock *currMB, ColorPlane pl, int new_intra_mode, int is_cavlc)
{
int i,j;
int ii,jj;
int run,scan_pos,coeff_ctr;
int ac_coef = 0;
static imgpel *img_Y, *predY;
int b8, b4;
//begin the changes
int pl_off = pl<<2;
int* DCLevel = img->cofDC[pl][0];
int* DCRun = img->cofDC[pl][1];
int* ACLevel;
int* ACRun;
imgpel **img_enc = enc_picture->p_curr_img;
int *m7;
const byte (*pos_scan)[2] = currMB->is_field_mode ? FIELD_SCAN : SNGL_SCAN;
imgpel (*curr_mpr_16x16)[MB_BLOCK_SIZE][MB_BLOCK_SIZE] = img->mpr_16x16[pl];
for (j = 0; j < 16; j++)
{
predY = curr_mpr_16x16[new_intra_mode][j];
img_Y = &pCurImg[img->opix_y + j][img->opix_x];
for (i = 0; i < 16; i++)
{
M1[j][i] = img_Y[i] - predY[i];
}
}
// pick out DC coeff
for (j = 0; j < 4;j++)
for (i = 0; i < 4;i++)
M4[j][i]= M1[j << 2][i << 2];
run=-1;
scan_pos=0;
for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++)
{
i=pos_scan[coeff_ctr][0];
j=pos_scan[coeff_ctr][1];
run++;
m7 = &M4[j][i];
if (*m7 != 0)
{
if (is_cavlc)
*m7 = iClip3(-CAVLC_LEVEL_LIMIT, CAVLC_LEVEL_LIMIT, *m7);
DCLevel[scan_pos ] = *m7;
DCRun [scan_pos++] = run;
run=-1;
}
}
DCLevel[scan_pos]=0;
// replace DC coeff. This is needed in case of out of limits for CAVLC. Could be done only for CAVLC
for (j = 0; j < 4;j++)
for (i = 0; i < 4;i++)
M1[j << 2][i << 2] = M4[j][i];
// AC inverse trans/quant for MB
for (jj=0;jj<4;jj++)
{
for (ii=0;ii<4;ii++)
{
for (j=0;j<4;j++)
{
memcpy(M4[j],&M1[(jj<<2)+j][(ii<<2)], BLOCK_SIZE * sizeof(int));
}
//For residual DPCM
if(new_intra_mode < 2) //residual DPCM
{
Residual_DPCM_4x4_for_Intra16x16(M4, new_intra_mode);
}
run = -1;
scan_pos = 0;
b8 = 2*(jj >> 1) + (ii >> 1);
b4 = 2*(jj & 0x01) + (ii & 0x01);
ACLevel = img->cofAC [b8+pl_off][b4][0];
ACRun = img->cofAC [b8+pl_off][b4][1];
for (coeff_ctr=1;coeff_ctr<16;coeff_ctr++) // set in AC coeff
{
i=pos_scan[coeff_ctr][0];
j=pos_scan[coeff_ctr][1];
run++;
m7 = &M4[j][i];
if (*m7 != 0)
{
if (is_cavlc)
*m7 = iClip3(-CAVLC_LEVEL_LIMIT, CAVLC_LEVEL_LIMIT, *m7);
ac_coef = 15;
ACLevel[scan_pos ] = *m7;
ACRun [scan_pos++] = run;
run=-1;
}
// set adaptive rounding params to 0 since process is not meaningful here.
}
ACLevel[scan_pos] = 0;
///For residual DPCM. inv. residual DCPM
if(new_intra_mode<2)
{
Inv_Residual_DPCM_4x4_for_Intra16x16(M4, new_intra_mode);
}
for (j=0;j<4;j++)
memcpy(&M1[(jj<<2)+j][(ii<<2)],M4[j], BLOCK_SIZE * sizeof(int));
}
}
for (j = 0; j < 16; j++)
{
img_Y = &img_enc[img->pix_y + j][img->pix_x];
predY = curr_mpr_16x16[new_intra_mode][j];
for (i = 0; i < 16; i++)
img_Y[i]=(imgpel)(M1[j][i] + predY[i]);
}
if(img->type == SP_SLICE)
{
for (j = img->pix_y; j < img->pix_y + 16;j++)
for (i = img->pix_x; i < img->pix_x + 16;i++)
lrec[j][i]=-16; //signals an I16 block in the SP frame
}
return ac_coef;
}
/*!
************************************************************************
* \brief
* The routine performs transform,quantization,inverse transform,
* adds the diff to the prediction and writes the result to the
* decoded luma frame.
*
* \par Input:
* currMB: Current macroblock.
* pl: Color plane for 4:4:4 coding.
* block_x,block_y: Block position inside a macro block (0,4,8,12).
* intra: Intra block indicator.
*
* \par Output_
* nonzero: 0 if no levels are nonzero. \n
* 1 if there are nonzero levels.\n
* coeff_cost: Coeff coding cost for thresholding consideration.\n
************************************************************************
*/
int dct_4x4(Macroblock *currMB, ColorPlane pl, int block_x,int block_y, int *coeff_cost, int intra, int is_cavlc)
{
int j;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -