📄 avo_abe.m
字号:
%AVO_ABE AVO parameters%function [A,B1,B2,E1,E2]=avo_abe(vp1,vs1,d1,vp2,vs2,d2);%%Calculates AVO parameters:% A: Intercept (P-P) i.e. normal incidence reflectivity% B1, B2: P-P Gradient using different approximations% E1, E2: P-S Gradient using different approximations%input parameters:% layer 1 (top): vp1, vs1, density1 (d1)% layer 2 (bottom): vp2, vs2, density2 (d2)% % B1 Shuey's paper (2terms->B Castag)% B2 Castagna's paper->Shuey%(note: both are Shuey's approximation, but B2 is using Castagna's "way" to%calculate them. The results are slightly different)% E1 Ezequiel Gonzalez approximation% E2 Alejandro & Reinaldo approx%% See also AVOPP, AVOPS% written by Ezequiel Gonzalez (Oct,1999)% modified T. Mukerji Feb 2001da=(d1+d2)/2; Dd=(d2-d1);vpa=(vp1+vp2)/2; Dvp=(vp2-vp1);vsa=(vs1+vs2)/2; Dvs=(vs2-vs1);Ro=0.5.*((Dvp./vpa)+(Dd./da));A=Ro;%% case 1, %Shuey's paper (2terms->B Castag) poi1=((0.5.*(vp1./vs1).^2)-1)./((vp1./vs1).^2-1); poi2=((0.5.*(vp2./vs2).^2)-1)./((vp2./vs2).^2-1); poia=(poi1+poi2)./2; Dpoi=(poi2-poi1); Bx=(Dvp./vpa)./((Dvp./vpa)+(Dd./da)); Ax=Bx-(2.*(1+Bx).*(1-2.*poia)./(1-poia)); B1=(Ax.*Ro)+(Dpoi./(1-poia).^2);%% case 2, %Castagna's paper->Shuey B2=(-2.*vsa.^2.*Dd./(vpa.^2.*da)) + (0.5.*Dvp./vpa) - ... (4.*vsa.*Dvs./(vpa.^2));%% E1 Gonzalez approx.E1=(-0.5.*Dd./da)-((vsa./vpa).*((Dd./da)+(2.*Dvs./vsa))) + ... (((vsa./vpa).^3).*((0.5.*Dd./da)+(Dvs./vsa)));%% E2 Alejandro & ReinaldoE2=-2.*(vs1./vp1).*((Dd./da.*(0.5+(0.25.*vpa./vsa)))+... (Dvs./vsa));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -