⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 aops.c

📁 ocfs1.4.1 oracle分布式文件系统
💻 C
📖 第 1 页 / 共 4 页
字号:
		if (!IS_ERR(handle))			ocfs2_commit_trans(osb, handle);		handle = ERR_PTR(ret);	}	return handle;}static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block){	sector_t status;	u64 p_blkno = 0;	int err = 0;	struct inode *inode = mapping->host;	mlog_entry("(block = %llu)\n", (unsigned long long)block);	/* We don't need to lock journal system files, since they aren't	 * accessed concurrently from multiple nodes.	 */	if (!INODE_JOURNAL(inode)) {		err = ocfs2_inode_lock(inode, NULL, 0);		if (err) {			if (err != -ENOENT)				mlog_errno(err);			goto bail;		}		down_read(&OCFS2_I(inode)->ip_alloc_sem);	}	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,						  NULL);	if (!INODE_JOURNAL(inode)) {		up_read(&OCFS2_I(inode)->ip_alloc_sem);		ocfs2_inode_unlock(inode, 0);	}	if (err) {		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",		     (unsigned long long)block);		mlog_errno(err);		goto bail;	}bail:	status = err ? 0 : p_blkno;	mlog_exit((int)status);	return status;}/* * TODO: Make this into a generic get_blocks function. * * From do_direct_io in direct-io.c: *  "So what we do is to permit the ->get_blocks function to populate *   bh.b_size with the size of IO which is permitted at this offset and *   this i_blkbits." * * This function is called directly from get_more_blocks in direct-io.c. * * called like this: dio->get_blocks(dio->inode, fs_startblk, * 					fs_count, map_bh, dio->rw == WRITE); */#ifdef DIO_OLD_GET_BLOCKSstatic int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,				      unsigned long max_blocks,				      struct buffer_head *bh_result,				      int create){#elsestatic int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,				     struct buffer_head *bh_result, int create){	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;#endif	int ret;	u64 p_blkno, inode_blocks, contig_blocks;	unsigned int ext_flags;	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;	/* This function won't even be called if the request isn't all	 * nicely aligned and of the right size, so there's no need	 * for us to check any of that. */	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));	/*	 * Any write past EOF is not allowed because we'd be extending.	 */	if (create && (iblock + max_blocks) > inode_blocks) {		ret = -EIO;		goto bail;	}	/* This figures out the size of the next contiguous block, and	 * our logical offset */	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,					  &contig_blocks, &ext_flags);	if (ret) {		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",		     (unsigned long long)iblock);		ret = -EIO;		goto bail;	}	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {		ocfs2_error(inode->i_sb,			    "Inode %llu has a hole at block %llu\n",			    (unsigned long long)OCFS2_I(inode)->ip_blkno,			    (unsigned long long)iblock);		ret = -EROFS;		goto bail;	}	/*	 * get_more_blocks() expects us to describe a hole by clearing	 * the mapped bit on bh_result().	 *	 * Consider an unwritten extent as a hole.	 */	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))		map_bh(bh_result, inode->i_sb, p_blkno);	else {		/*		 * ocfs2_prepare_inode_for_write() should have caught		 * the case where we'd be filling a hole and triggered		 * a buffered write instead.		 */		if (create) {			ret = -EIO;			mlog_errno(ret);			goto bail;		}		clear_buffer_mapped(bh_result);	}	/* make sure we don't map more than max_blocks blocks here as	   that's all the kernel will handle at this point. */	if (max_blocks < contig_blocks)		contig_blocks = max_blocks;	bh_result->b_size = contig_blocks << blocksize_bits;bail:	return ret;}/*  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're * particularly interested in the aio/dio case.  Like the core uses * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from * truncation on another. */static void ocfs2_dio_end_io(struct kiocb *iocb,			     loff_t offset,			     ssize_t bytes,			     void *private){	struct inode *inode = filp_dentry(iocb->ki_filp)->d_inode;	int level;	/* this io's submitter should not have unlocked this before we could */	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));	ocfs2_iocb_clear_rw_locked(iocb);	level = ocfs2_iocb_rw_locked_level(iocb);	if (!level)		up_read(&inode->i_alloc_sem);	ocfs2_rw_unlock(inode, level);}/* * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen * from ext3.  PageChecked() bits have been removed as OCFS2 does not * do journalled data. */#ifdef INVALIDATEPAGE_RETURNS_INTstatic int ocfs2_invalidatepage(struct page *page, unsigned long offset)#elsestatic void ocfs2_invalidatepage(struct page *page, unsigned long offset)#endif{	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;	journal_invalidatepage(journal, page, offset);#ifdef INVALIDATEPAGE_RETURNS_INT	return 0;#endif}static int ocfs2_releasepage(struct page *page, gfp_t wait){	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;	if (!page_has_buffers(page))		return 0;	return journal_try_to_free_buffers(journal, page, wait);}static ssize_t ocfs2_direct_IO(int rw,			       struct kiocb *iocb,			       const struct iovec *iov,			       loff_t offset,			       unsigned long nr_segs){	struct file *file = iocb->ki_filp;	struct inode *inode = filp_dentry(file)->d_inode->i_mapping->host;	int ret;	mlog_entry_void();	/*	 * Fallback to buffered I/O if we see an inode without	 * extents.	 */	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)		return 0;	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,					    inode->i_sb->s_bdev, iov, offset,					    nr_segs, 					    ocfs2_direct_IO_get_blocks,					    ocfs2_dio_end_io);	mlog_exit(ret);	return ret;}static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,					    u32 cpos,					    unsigned int *start,					    unsigned int *end){	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {		unsigned int cpp;		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);		cluster_start = cpos % cpp;		cluster_start = cluster_start << osb->s_clustersize_bits;		cluster_end = cluster_start + osb->s_clustersize;	}	BUG_ON(cluster_start > PAGE_SIZE);	BUG_ON(cluster_end > PAGE_SIZE);	if (start)		*start = cluster_start;	if (end)		*end = cluster_end;}/* * 'from' and 'to' are the region in the page to avoid zeroing. * * If pagesize > clustersize, this function will avoid zeroing outside * of the cluster boundary. * * from == to == 0 is code for "zero the entire cluster region" */static void ocfs2_clear_page_regions(struct page *page,				     struct ocfs2_super *osb, u32 cpos,				     unsigned from, unsigned to){	void *kaddr;	unsigned int cluster_start, cluster_end;	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);	kaddr = kmap_atomic(page, KM_USER0);	if (from || to) {		if (from > cluster_start)			memset(kaddr + cluster_start, 0, from - cluster_start);		if (to < cluster_end)			memset(kaddr + to, 0, cluster_end - to);	} else {		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);	}	kunmap_atomic(kaddr, KM_USER0);}/* * Nonsparse file systems fully allocate before we get to the write * code. This prevents ocfs2_write() from tagging the write as an * allocating one, which means ocfs2_map_page_blocks() might try to * read-in the blocks at the tail of our file. Avoid reading them by * testing i_size against each block offset. */static int ocfs2_should_read_blk(struct inode *inode, struct page *page,				 unsigned int block_start){	u64 offset = page_offset(page) + block_start;	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))		return 1;	if (i_size_read(inode) > offset)		return 1;	return 0;}/* * Some of this taken from block_prepare_write(). We already have our * mapping by now though, and the entire write will be allocating or * it won't, so not much need to use BH_New. * * This will also skip zeroing, which is handled externally. */int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,			  struct inode *inode, unsigned int from,			  unsigned int to, int new){	int ret = 0;	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;	unsigned int block_end, block_start;	unsigned int bsize = 1 << inode->i_blkbits;	if (!page_has_buffers(page))		create_empty_buffers(page, bsize, 0);	head = page_buffers(page);	for (bh = head, block_start = 0; bh != head || !block_start;	     bh = bh->b_this_page, block_start += bsize) {		block_end = block_start + bsize;		clear_buffer_new(bh);		/*		 * Ignore blocks outside of our i/o range -		 * they may belong to unallocated clusters.		 */		if (block_start >= to || block_end <= from) {			if (PageUptodate(page))				set_buffer_uptodate(bh);			continue;		}		/*		 * For an allocating write with cluster size >= page		 * size, we always write the entire page.		 */		if (new)			set_buffer_new(bh);		if (!buffer_mapped(bh)) {			map_bh(bh, inode->i_sb, *p_blkno);			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);		}		if (PageUptodate(page)) {			if (!buffer_uptodate(bh))				set_buffer_uptodate(bh);		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&			   !buffer_new(bh) &&			   ocfs2_should_read_blk(inode, page, block_start) &&			   (block_start < from || block_end > to)) {			ll_rw_block(READ, 1, &bh);			*wait_bh++=bh;		}		*p_blkno = *p_blkno + 1;	}	/*	 * If we issued read requests - let them complete.	 */	while(wait_bh > wait) {		wait_on_buffer(*--wait_bh);		if (!buffer_uptodate(*wait_bh))			ret = -EIO;	}	if (ret == 0 || !new)		return ret;	/*	 * If we get -EIO above, zero out any newly allocated blocks	 * to avoid exposing stale data.	 */	bh = head;	block_start = 0;	do {		block_end = block_start + bsize;		if (block_end <= from)			goto next_bh;		if (block_start >= to)			break;		zero_user_page(page, block_start, bh->b_size, KM_USER0);		set_buffer_uptodate(bh);		mark_buffer_dirty(bh);next_bh:		block_start = block_end;		bh = bh->b_this_page;	} while (bh != head);	return ret;}#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)#define OCFS2_MAX_CTXT_PAGES	1#else#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)#endif#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)/* * Describe the state of a single cluster to be written to. */struct ocfs2_write_cluster_desc {	u32		c_cpos;	u32		c_phys;	/*	 * Give this a unique field because c_phys eventually gets	 * filled.	 */	unsigned	c_new;	unsigned	c_unwritten;};static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d){	return d->c_new || d->c_unwritten;}struct ocfs2_write_ctxt {	/* Logical cluster position / len of write */	u32				w_cpos;	u32				w_clen;	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];	/*	 * This is true if page_size > cluster_size.	 *	 * It triggers a set of special cases during write which might	 * have to deal with allocating writes to partial pages.	 */	unsigned int			w_large_pages;	/*	 * Pages involved in this write.	 *	 * w_target_page is the page being written to by the user.	 *	 * w_pages is an array of pages which always contains	 * w_target_page, and in the case of an allocating write with	 * page_size < cluster size, it will contain zero'd and mapped	 * pages adjacent to w_target_page which need to be written	 * out in so that future reads from that region will get	 * zero's.	 */	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];	unsigned int			w_num_pages;	struct page			*w_target_page;	/*	 * ocfs2_write_end() uses this to know what the real range to	 * write in the target should be.	 */	unsigned int			w_target_from;	unsigned int			w_target_to;	/*	 * We could use journal_current_handle() but this is cleaner,	 * IMHO -Mark	 */	handle_t			*w_handle;	struct buffer_head		*w_di_bh;	struct ocfs2_cached_dealloc_ctxt w_dealloc;};void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages){	int i;	for(i = 0; i < num_pages; i++) {		if (pages[i]) {			unlock_page(pages[i]);			mark_page_accessed(pages[i]);			page_cache_release(pages[i]);		}	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -