⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix.js

📁 struts hibernet spring
💻 JS
字号:
/*	Copyright (c) 2004-2006, The Dojo Foundation	All Rights Reserved.	Licensed under the Academic Free License version 2.1 or above OR the	modified BSD license. For more information on Dojo licensing, see:		http://dojotoolkit.org/community/licensing.shtml*/dojo.provide("dojo.math.matrix");// some of this code is based on// http://www.mkaz.com/math/MatrixCalculator.java// (published under a BSD Open Source License)//// the rest is from my vague memory of matricies in school [cal]//// the copying of arguments is a little excessive, and could be trimmed back in// the case where a function doesn't modify them at all (but some do!)//// 2006-06-25: Some enhancements submitted by Erel Segal:// * addition: a tolerance constant for determinant calculations.// * performance fix: removed unnecessary argument copying.// * addition: function "product" for multiplying more than 2 matrices// * addition: function "sum" for adding any number of matrices// * bug fix: inversion of a 1x1 matrix without using the adjoint// * performance fixes: upperTriangle// * addition: argument "value" to function create, to initialize the matrix with a custom val// * addition: functions "ones" and "zeros" - like Matlab[TM] functions with the same name.// * addition: function "identity" for creating an identity matrix of a given size.// * addition: argument "decimal_points" to function format// * bug fix: adjoint of a 0-size matrix// * performance fixes: adjoint//dojo.math.matrix.iDF = 0;// Erel: values lower than this value are considered zero (in detereminant calculations).// It is analogous to Maltab[TM]'s "eps".dojo.math.matrix.ALMOST_ZERO = 1e-10;dojo.math.matrix.multiply = function(a, b){	var ay = a.length;	var ax = a[0].length;	var by = b.length;	var bx = b[0].length;	if (ax != by){		dojo.debug("Can't multiply matricies of sizes "+ax+','+ay+' and '+bx+','+by);		return [[0]];	}	var c = [];	for(var k=0; k<ay; k++){		c[k] = [];		for(var i=0; i<bx; i++){			c[k][i] = 0;			for(var m=0; m<ax; m++){				c[k][i] += a[k][m]*b[m][i];			}		}	}	return c;}// Erel: added a "product" function to calculate product of more than 2 matrices:dojo.math.matrix.product = function() {	if (arguments.length==0) {		dojo.debug ("can't multiply 0 matrices!");		return 1;	}	var result = arguments[0];	for (var i=1; i<arguments.length; i++){		result = dojo.math.matrix.multiply(result,arguments[i]);	}	return result;}// Erel: added a "sum" function to calculate sum of more than 2 matrices:dojo.math.matrix.sum = function() {	if (arguments.length==0) {		dojo.debug ("can't sum 0 matrices!");		return 0;	}	var result = dojo.math.matrix.copy(arguments[0]);	var rows = result.length;	if (rows==0) {		dojo.debug ("can't deal with matrices of 0 rows!");		return 0;	}	var cols = result[0].length;	if (cols==0) {		dojo.debug ("can't deal with matrices of 0 cols!");		return 0;	}	for (var i=1; i<arguments.length; ++i) {		var arg = arguments[i];		if (arg.length!=rows || arg[0].length!=cols) {			dojo.debug ("can't add matrices of different dimensions: first dimensions were " + rows + "x" + cols + ", current dimensions are "+arg.length + "x" + arg[0].length);			return 0;		}				// The actual addition:		for (var r=0; r<rows; r++){			for (var c=0; c<cols; c++){				result[r][c] += arg[r][c];			}		}	}	return result;}dojo.math.matrix.inverse = function(a){	// Erel: added special case: inverse of a 1x1 matrix can't be calculated by adjoint	if (a.length==1 && a[0].length==1){		return [[ 1 / a[0][0] ]];	}	// Formula used to Calculate Inverse:	// inv(A) = 1/det(A) * adj(A)		var tms = a.length;	var m = dojo.math.matrix.create(tms, tms);	var mm = dojo.math.matrix.adjoint(a);	var det = dojo.math.matrix.determinant(a);	var dd = 0;	if(det == 0){		dojo.debug("Determinant Equals 0, Not Invertible.");		return [[0]];	}else{		dd = 1 / det;	}	for (var i = 0; i < tms; i++){		for (var j = 0; j < tms; j++) {			m[i][j] = dd * mm[i][j];		}	}	return m;}dojo.math.matrix.determinant = function(a){	if (a.length != a[0].length){		dojo.debug("Can't calculate the determiant of a non-squre matrix!");		return 0;	}	var tms = a.length;	var det = 1;	var b = dojo.math.matrix.upperTriangle(a);	for (var i=0; i < tms; i++){		var bii = b[i][i];		if (Math.abs(bii) < dojo.math.matrix.ALMOST_ZERO){			return 0;		}		det *= bii;	}	det = det * dojo.math.matrix.iDF;	return det;}dojo.math.matrix.upperTriangle = function(m){	m = dojo.math.matrix.copy(m);     // Copy m, because m is changed!	var f1 = 0;	var temp = 0;	var tms = m.length;	var v = 1;	//Erel: why use a global variable and not a local variable?	dojo.math.matrix.iDF = 1;	for (var col = 0; col < tms - 1; col++) {		if (typeof m[col][col] != 'number'){			dojo.debug("non-numeric entry found in a numeric matrix: m["+col+"]["+col+"]="+m[col][col]);		}		v = 1;		var stop_loop = 0;				// check if there is a 0 in diagonal		while ((m[col][col] == 0) && !stop_loop) {			// if so,  switch rows until there is no 0 in diagonal:			if (col + v >= tms){				// check if switched all rows				dojo.math.matrix.iDF = 0;				stop_loop = 1;			}else{				for (var r = 0; r < tms; r++) {					temp = m[col][r];					m[col][r] = m[col + v][r]; // switch rows					m[col + v][r] = temp;				}				v++; // count row switchs				dojo.math.matrix.iDF *= -1; // each switch changes determinant factor			}		}				// loop over lower-right triangle (where row>col):		// for each row, make m[row][col] = 0 by linear operations that don't change the determinant:		for (var row = col + 1; row < tms; row++) {			if (typeof m[row][col] != 'number'){				dojo.debug("non-numeric entry found in a numeric matrix: m["+row+"]["+col+"]="+m[row][col]);			}			if (typeof m[col][row] != 'number'){				dojo.debug("non-numeric entry found in a numeric matrix: m["+col+"]["+row+"]="+m[col][row]);			}			if (m[col][col] != 0) {				var f1 = (-1) * m[row][col] / m[col][col];				// this should make m[row][col] zero:				// 	m[row] += f1 * m[col];				for (var i = col; i < tms; i++) {					m[row][i] = f1 * m[col][i] + m[row][i];				}			}		}	}	return m;}// Erel: added parameter "value" - a custom default value to fill the matrix with.dojo.math.matrix.create = function(a, b, value){	if(!value){		value = 0;	}	var m = [];	for(var i=0; i<b; i++){		m[i] = [];		for(var j=0; j<a; j++){			m[i][j] = value;		}	}	return m;}// Erel implement Matlab[TM] functions "ones" and "zeros"dojo.math.matrix.ones = function(a,b) { 	return dojo.math.matrix.create(a,b,1); }dojo.math.matrix.zeros = function(a,b) { 	return dojo.math.matrix.create(a,b,0); }// Erel: added function that returns identity matrix.//	size = number of rows and cols in the matrix.//	scale = an optional value to multiply the matrix by (default is 1).dojo.math.matrix.identity = function(size, scale){	if (!scale){		scale = 1;	}	var m = [];	for(var i=0; i<size; i++){		m[i] = [];		for(var j=0; j<size; j++){			m[i][j] = (i==j? scale: 0);		}	}	return m;}dojo.math.matrix.adjoint = function(a){	var tms = a.length;	// Erel: added "<=" to catch zero-size matrix	if (tms <= 1){		dojo.debug("Can't find the adjoint of a matrix with a dimension less than 2");		return [[0]];	}	if (a.length != a[0].length){		dojo.debug("Can't find the adjoint of a non-square matrix");		return [[0]];	}	var m = dojo.math.matrix.create(tms, tms);	var ii = 0;	var jj = 0;	var ia = 0;	var ja = 0;	var det = 0;	var ap = dojo.math.matrix.create(tms-1, tms-1);	for (var i = 0; i < tms; i++){		for (var j = 0; j < tms; j++){			ia = 0;			for (ii = 0; ii < tms; ii++) {   // create a temporary matrix for determinant calc				if (ii==i){					continue;       // skip current row				}				ja = 0;				for (jj = 0; jj < tms; jj++) {					if (jj==j){						continue;       // skip current col					}					ap[ia][ja] = a[ii][jj];					ja++;				}				ia++;			}					det = dojo.math.matrix.determinant(ap);			m[i][j] = Math.pow(-1 , (i + j)) * det;		}	}	m = dojo.math.matrix.transpose(m);	return m;}dojo.math.matrix.transpose = function(a){	var m = dojo.math.matrix.create(a.length, a[0].length);	for (var i = 0; i < a.length; i++){		for (var j = 0; j < a[i].length; j++){			m[j][i] = a[i][j];		}	}	return m;}// Erel: added decimal_points argumentdojo.math.matrix.format = function(a, decimal_points){	if (arguments.length<=1){		decimal_points = 5;	}	function format_int(x, dp){		var fac = Math.pow(10 , dp);		var a = Math.round(x*fac)/fac;		var b = a.toString();		if (b.charAt(0) != '-'){ b = ' ' + b;}		var has_dp = 0;		for(var i=1; i<b.length; i++){			if (b.charAt(i) == '.'){ has_dp = 1; }		}		if (!has_dp){ b += '.'; }		while(b.length < dp+3){ b += '0'; }		return b;	}	var ya = a.length;	var xa = ya>0? a[0].length: 0;	var buffer = '';	for (var y=0; y<ya; y++){		buffer += '| ';		for (var x=0; x<xa; x++){			buffer += format_int(a[y][x], decimal_points) + ' ';		}		buffer += '|\n';	}	return buffer;}dojo.math.matrix.copy = function(a){	var ya = a.length;	var xa = a[0].length;	var m = dojo.math.matrix.create(xa, ya);	for (var y=0; y<ya; y++){		for (var x=0; x<xa; x++){			m[y][x] = a[y][x];		}	}	return m;}dojo.math.matrix.scale = function(k, a){	a = dojo.math.matrix.copy(a);  // Copy a because a is changed!	var ya = a.length;	var xa = a[0].length;	for (var y=0; y<ya; y++){		for (var x=0; x<xa; x++){			a[y][x] *= k;		}	}	return a;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -