📄 matrix.js
字号:
/* Copyright (c) 2004-2006, The Dojo Foundation All Rights Reserved. Licensed under the Academic Free License version 2.1 or above OR the modified BSD license. For more information on Dojo licensing, see: http://dojotoolkit.org/community/licensing.shtml*/dojo.provide("dojo.math.matrix");// some of this code is based on// http://www.mkaz.com/math/MatrixCalculator.java// (published under a BSD Open Source License)//// the rest is from my vague memory of matricies in school [cal]//// the copying of arguments is a little excessive, and could be trimmed back in// the case where a function doesn't modify them at all (but some do!)//// 2006-06-25: Some enhancements submitted by Erel Segal:// * addition: a tolerance constant for determinant calculations.// * performance fix: removed unnecessary argument copying.// * addition: function "product" for multiplying more than 2 matrices// * addition: function "sum" for adding any number of matrices// * bug fix: inversion of a 1x1 matrix without using the adjoint// * performance fixes: upperTriangle// * addition: argument "value" to function create, to initialize the matrix with a custom val// * addition: functions "ones" and "zeros" - like Matlab[TM] functions with the same name.// * addition: function "identity" for creating an identity matrix of a given size.// * addition: argument "decimal_points" to function format// * bug fix: adjoint of a 0-size matrix// * performance fixes: adjoint//dojo.math.matrix.iDF = 0;// Erel: values lower than this value are considered zero (in detereminant calculations).// It is analogous to Maltab[TM]'s "eps".dojo.math.matrix.ALMOST_ZERO = 1e-10;dojo.math.matrix.multiply = function(a, b){ var ay = a.length; var ax = a[0].length; var by = b.length; var bx = b[0].length; if (ax != by){ dojo.debug("Can't multiply matricies of sizes "+ax+','+ay+' and '+bx+','+by); return [[0]]; } var c = []; for(var k=0; k<ay; k++){ c[k] = []; for(var i=0; i<bx; i++){ c[k][i] = 0; for(var m=0; m<ax; m++){ c[k][i] += a[k][m]*b[m][i]; } } } return c;}// Erel: added a "product" function to calculate product of more than 2 matrices:dojo.math.matrix.product = function() { if (arguments.length==0) { dojo.debug ("can't multiply 0 matrices!"); return 1; } var result = arguments[0]; for (var i=1; i<arguments.length; i++){ result = dojo.math.matrix.multiply(result,arguments[i]); } return result;}// Erel: added a "sum" function to calculate sum of more than 2 matrices:dojo.math.matrix.sum = function() { if (arguments.length==0) { dojo.debug ("can't sum 0 matrices!"); return 0; } var result = dojo.math.matrix.copy(arguments[0]); var rows = result.length; if (rows==0) { dojo.debug ("can't deal with matrices of 0 rows!"); return 0; } var cols = result[0].length; if (cols==0) { dojo.debug ("can't deal with matrices of 0 cols!"); return 0; } for (var i=1; i<arguments.length; ++i) { var arg = arguments[i]; if (arg.length!=rows || arg[0].length!=cols) { dojo.debug ("can't add matrices of different dimensions: first dimensions were " + rows + "x" + cols + ", current dimensions are "+arg.length + "x" + arg[0].length); return 0; } // The actual addition: for (var r=0; r<rows; r++){ for (var c=0; c<cols; c++){ result[r][c] += arg[r][c]; } } } return result;}dojo.math.matrix.inverse = function(a){ // Erel: added special case: inverse of a 1x1 matrix can't be calculated by adjoint if (a.length==1 && a[0].length==1){ return [[ 1 / a[0][0] ]]; } // Formula used to Calculate Inverse: // inv(A) = 1/det(A) * adj(A) var tms = a.length; var m = dojo.math.matrix.create(tms, tms); var mm = dojo.math.matrix.adjoint(a); var det = dojo.math.matrix.determinant(a); var dd = 0; if(det == 0){ dojo.debug("Determinant Equals 0, Not Invertible."); return [[0]]; }else{ dd = 1 / det; } for (var i = 0; i < tms; i++){ for (var j = 0; j < tms; j++) { m[i][j] = dd * mm[i][j]; } } return m;}dojo.math.matrix.determinant = function(a){ if (a.length != a[0].length){ dojo.debug("Can't calculate the determiant of a non-squre matrix!"); return 0; } var tms = a.length; var det = 1; var b = dojo.math.matrix.upperTriangle(a); for (var i=0; i < tms; i++){ var bii = b[i][i]; if (Math.abs(bii) < dojo.math.matrix.ALMOST_ZERO){ return 0; } det *= bii; } det = det * dojo.math.matrix.iDF; return det;}dojo.math.matrix.upperTriangle = function(m){ m = dojo.math.matrix.copy(m); // Copy m, because m is changed! var f1 = 0; var temp = 0; var tms = m.length; var v = 1; //Erel: why use a global variable and not a local variable? dojo.math.matrix.iDF = 1; for (var col = 0; col < tms - 1; col++) { if (typeof m[col][col] != 'number'){ dojo.debug("non-numeric entry found in a numeric matrix: m["+col+"]["+col+"]="+m[col][col]); } v = 1; var stop_loop = 0; // check if there is a 0 in diagonal while ((m[col][col] == 0) && !stop_loop) { // if so, switch rows until there is no 0 in diagonal: if (col + v >= tms){ // check if switched all rows dojo.math.matrix.iDF = 0; stop_loop = 1; }else{ for (var r = 0; r < tms; r++) { temp = m[col][r]; m[col][r] = m[col + v][r]; // switch rows m[col + v][r] = temp; } v++; // count row switchs dojo.math.matrix.iDF *= -1; // each switch changes determinant factor } } // loop over lower-right triangle (where row>col): // for each row, make m[row][col] = 0 by linear operations that don't change the determinant: for (var row = col + 1; row < tms; row++) { if (typeof m[row][col] != 'number'){ dojo.debug("non-numeric entry found in a numeric matrix: m["+row+"]["+col+"]="+m[row][col]); } if (typeof m[col][row] != 'number'){ dojo.debug("non-numeric entry found in a numeric matrix: m["+col+"]["+row+"]="+m[col][row]); } if (m[col][col] != 0) { var f1 = (-1) * m[row][col] / m[col][col]; // this should make m[row][col] zero: // m[row] += f1 * m[col]; for (var i = col; i < tms; i++) { m[row][i] = f1 * m[col][i] + m[row][i]; } } } } return m;}// Erel: added parameter "value" - a custom default value to fill the matrix with.dojo.math.matrix.create = function(a, b, value){ if(!value){ value = 0; } var m = []; for(var i=0; i<b; i++){ m[i] = []; for(var j=0; j<a; j++){ m[i][j] = value; } } return m;}// Erel implement Matlab[TM] functions "ones" and "zeros"dojo.math.matrix.ones = function(a,b) { return dojo.math.matrix.create(a,b,1); }dojo.math.matrix.zeros = function(a,b) { return dojo.math.matrix.create(a,b,0); }// Erel: added function that returns identity matrix.// size = number of rows and cols in the matrix.// scale = an optional value to multiply the matrix by (default is 1).dojo.math.matrix.identity = function(size, scale){ if (!scale){ scale = 1; } var m = []; for(var i=0; i<size; i++){ m[i] = []; for(var j=0; j<size; j++){ m[i][j] = (i==j? scale: 0); } } return m;}dojo.math.matrix.adjoint = function(a){ var tms = a.length; // Erel: added "<=" to catch zero-size matrix if (tms <= 1){ dojo.debug("Can't find the adjoint of a matrix with a dimension less than 2"); return [[0]]; } if (a.length != a[0].length){ dojo.debug("Can't find the adjoint of a non-square matrix"); return [[0]]; } var m = dojo.math.matrix.create(tms, tms); var ii = 0; var jj = 0; var ia = 0; var ja = 0; var det = 0; var ap = dojo.math.matrix.create(tms-1, tms-1); for (var i = 0; i < tms; i++){ for (var j = 0; j < tms; j++){ ia = 0; for (ii = 0; ii < tms; ii++) { // create a temporary matrix for determinant calc if (ii==i){ continue; // skip current row } ja = 0; for (jj = 0; jj < tms; jj++) { if (jj==j){ continue; // skip current col } ap[ia][ja] = a[ii][jj]; ja++; } ia++; } det = dojo.math.matrix.determinant(ap); m[i][j] = Math.pow(-1 , (i + j)) * det; } } m = dojo.math.matrix.transpose(m); return m;}dojo.math.matrix.transpose = function(a){ var m = dojo.math.matrix.create(a.length, a[0].length); for (var i = 0; i < a.length; i++){ for (var j = 0; j < a[i].length; j++){ m[j][i] = a[i][j]; } } return m;}// Erel: added decimal_points argumentdojo.math.matrix.format = function(a, decimal_points){ if (arguments.length<=1){ decimal_points = 5; } function format_int(x, dp){ var fac = Math.pow(10 , dp); var a = Math.round(x*fac)/fac; var b = a.toString(); if (b.charAt(0) != '-'){ b = ' ' + b;} var has_dp = 0; for(var i=1; i<b.length; i++){ if (b.charAt(i) == '.'){ has_dp = 1; } } if (!has_dp){ b += '.'; } while(b.length < dp+3){ b += '0'; } return b; } var ya = a.length; var xa = ya>0? a[0].length: 0; var buffer = ''; for (var y=0; y<ya; y++){ buffer += '| '; for (var x=0; x<xa; x++){ buffer += format_int(a[y][x], decimal_points) + ' '; } buffer += '|\n'; } return buffer;}dojo.math.matrix.copy = function(a){ var ya = a.length; var xa = a[0].length; var m = dojo.math.matrix.create(xa, ya); for (var y=0; y<ya; y++){ for (var x=0; x<xa; x++){ m[y][x] = a[y][x]; } } return m;}dojo.math.matrix.scale = function(k, a){ a = dojo.math.matrix.copy(a); // Copy a because a is changed! var ya = a.length; var xa = a[0].length; for (var y=0; y<ya; y++){ for (var x=0; x<xa; x++){ a[y][x] *= k; } } return a;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -