📄 7-14.m
字号:
%例程7-14 基于卡尔曼滤波器的机动目标跟踪
% Make a point move in the 2D plane
% State = (x y xdot ydot). We only observe (x y).
% X(t+1) = Φ(t) X(t) + noise(Q)
% Y(t) = H X(t) + noise(R)
ss = 4; % state size
os = 2; % observation size
F = [1 0 1 0; 0 1 0 1; 0 0 1 0; 0 0 0 1];
H = [1 0 0 0; 0 1 0 0];
Q = 0.1*eye(ss);
R = 1*eye(os);
initx = [10 10 1 0]'; %target initial parameters
initV = 10*eye(ss);
seed = 9;
rand('state', seed);
randn('state', seed);
T = 15;
[x,y] = sample_lds(F, H, Q, R, initx, T); %generate target data
%kalman filter
[xfilt, Vfilt, VVfilt, loglik] = kalman_filter(y, F, H, Q, R, initx, initV);
% one step predict
[xsmooth, Vsmooth] = kalman_smoother(y, F, H, Q, R, initx, initV);
%calculate the error between the filtered data and the real data
dfilt = x([1 2],:) - xfilt([1 2],:);
mse_filt = sqrt(sum(sum(dfilt.^2)));
dsmooth = x([1 2],:) - xsmooth([1 2],:);
mse_smooth = sqrt(sum(sum(dsmooth.^2)))
figure(1)
clf
%subplot(2,1,1)
hold on
plot(x(1,:), x(2,:), 'ks-');
plot(y(1,:), y(2,:), 'g*');
plot(xfilt(1,:), xfilt(2,:), 'rx:');
for t=1:T, plotgauss2d(xfilt(1:2,t), Vfilt(1:2, 1:2, t)); end
hold off
legend('true', 'observed', 'filtered', 3)
xlabel('x')
ylabel('y')
% 3x3 inches
set(gcf,'units','inches');
set(gcf,'PaperPosition',[0 0 3 3])
%print(gcf,'-depsc','/home/eecs/murphyk/public_html/Bayes/Figures/aima_filtered.eps');
%print(gcf,'-djpeg','-r100', '/home/eecs/murphyk/public_html/Bayes/Figures/aima_filtered.jpg');
figure(2)
%subplot(2,1,2)
hold on
plot(x(1,:), x(2,:), 'ks-');
plot(y(1,:), y(2,:), 'g*');
plot(xsmooth(1,:), xsmooth(2,:), 'rx:');
for t=1:T, plotgauss2d(xsmooth(1:2,t), Vsmooth(1:2, 1:2, t)); end
hold off
legend('true', 'observed', 'smoothed', 3)
xlabel('x')
ylabel('y')
% 3x3 inches
set(gcf,'units','inches');
set(gcf,'PaperPosition',[0 0 3 3])
%print(gcf,'-djpeg','-r100', '/home/eecs/murphyk/public_html/Bayes/Figures/aima_smoothed.jpg');
%print(gcf,'-depsc','/home/eecs/murphyk/public_html/Bayes/Figures/aima_smoothed.eps');
function [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, varargin)
% Kalman filter.
% [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, ...)
%
% INPUTS:
% y(:,t) - the observation at time t
% A - the system matrix
% C - the observation matrix
% Q - the system covariance
% R - the observation covariance
% init_x - the initial state (column) vector
% init_V - the initial state covariance
%
% OPTIONAL INPUTS (string/value pairs [default in brackets])
% 'model' - model(t)=m means use params from model m at time t [ones(1,T) ]
% In this case, all the above matrices take an additional final dimension,
% i.e., A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m).
% However, init_x and init_V are independent of model(1).
% 'u' - u(:,t) the control signal at time t [ [] ]
% 'B' - B(:,:,m) the input regression matrix for model m
%
% OUTPUTS (where X is the hidden state being estimated)
% x(:,t) = E[X(:,t) | y(:,1:t)]
% V(:,:,t) = Cov[X(:,t) | y(:,1:t)]
% VV(:,:,t) = Cov[X(:,t), X(:,t-1) | y(:,1:t)] t >= 2
% loglik = sum{t=1}^T log P(y(:,t))
%
% If an input signal is specified, we also condition on it:
% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t)]
% If a model sequence is specified, we also condition on it:
% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t), m(1:t)]
[os T] = size(y);
ss = size(A,1); % size of state space
% set default params
model = ones(1,T);
u = [];
B = [];
ndx = [];
args = varargin;
nargs = length(args);
for i=1:2:nargs
switch args{i}
case 'model', model = args{i+1};
case 'u', u = args{i+1};
case 'B', B = args{i+1};
case 'ndx', ndx = args{i+1};
otherwise, error(['unrecognized argument ' args{i}])
end
end
x = zeros(ss, T);
V = zeros(ss, ss, T);
VV = zeros(ss, ss, T);
loglik = 0;
for t=1:T
m = model(t);
if t==1
%prevx = init_x(:,m);
%prevV = init_V(:,:,m);
prevx = init_x;
prevV = init_V;
initial = 1;
else
prevx = x(:,t-1);
prevV = V(:,:,t-1);
initial = 0;
end
if isempty(u)
[x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...
kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, 'initial', initial);
else
if isempty(ndx)
[x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...
kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, ...
'initial', initial, 'u', u(:,t), 'B', B(:,:,m));
else
i = ndx{t};
% copy over all elements; only some will get updated
x(:,t) = prevx;
prevP = inv(prevV);
prevPsmall = prevP(i,i);
prevVsmall = inv(prevPsmall);
[x(i,t), smallV, LL, VV(i,i,t)] = ...
kalman_update(A(i,i,m), C(:,i,m), Q(i,i,m), R(:,:,m), y(:,t), prevx(i), prevVsmall, ...
'initial', initial, 'u', u(:,t), 'B', B(i,:,m));
smallP = inv(smallV);
prevP(i,i) = smallP;
V(:,:,t) = inv(prevP);
end
end
loglik = loglik + LL;
end
function [xnew, Vnew, loglik, VVnew] = kalman_update(A, C, Q, R, y, x, V, varargin)
% KALMAN_UPDATE Do a one step update of the Kalman filter
% [xnew, Vnew, loglik] = kalman_update(A, C, Q, R, y, x, V, ...)
%
% INPUTS:
% A - the system matrix
% C - the observation matrix
% Q - the system covariance
% R - the observation covariance
% y(:) - the observation at time t
% x(:) - E[X | y(:, 1:t-1)] prior mean
% V(:,:) - Cov[X | y(:, 1:t-1)] prior covariance
%
% OPTIONAL INPUTS (string/value pairs [default in brackets])
% 'initial' - 1 means x and V are taken as initial conditions (so A and Q are ignored) [0]
% 'u' - u(:) the control signal at time t [ [] ]
% 'B' - the input regression matrix
%
% OUTPUTS (where X is the hidden state being estimated)
% xnew(:) = E[ X | y(:, 1:t) ]
% Vnew(:,:) = Var[ X(t) | y(:, 1:t) ]
% VVnew(:,:) = Cov[ X(t), X(t-1) | y(:, 1:t) ]
% loglik = log P(y(:,t) | y(:,1:t-1)) log-likelihood of innovatio
% set default params
u = [];
B = [];
initial = 0;
args = varargin;
for i=1:2:length(args)
switch args{i}
case 'u', u = args{i+1};
case 'B', B = args{i+1};
case 'initial', initial = args{i+1};
otherwise, error(['unrecognized argument ' args{i}])
end
end
% xpred(:) = E[X_t+1 | y(:, 1:t)]
% Vpred(:,:) = Cov[X_t+1 | y(:, 1:t)]
if initial
if isempty(u)
xpred = x;
else
xpred = x + B*u;
end
Vpred = V;
else
if isempty(u)
xpred = A*x;
else
xpred = A*x + B*u;
end
Vpred = A*V*A' + Q;
end
e = y - C*xpred; % error (innovation)
n = length(e);
ss = length(A);
S = C*Vpred*C' + R;
Sinv = inv(S);
ss = length(V);
loglik = gaussian_prob(e, zeros(1,length(e)), S, 1);
K = Vpred*C'*Sinv; % Kalman gain matrix
% If there is no observation vector, set K = zeros(ss).
xnew = xpred + K*e;
Vnew = (eye(ss) - K*C)*Vpred;
VVnew = (eye(ss) - K*C)*A*V;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -