📄 gaussian.m
字号:
function p=gaussian(x,m,C);% p=gaussian(x,m,C);%% Evaluate the multi-variate density with mean vector m and covariance% matrix C for the input vector x.% % p=gaussian(X,m,C);% % Vectorized version: Here X is a matrix of column vectors, and p is % a vector of probabilities for each vector.% Jianbo Shi, 1997d=length(m);if size(x,1)~=d x=x';endN=size(x,2);detC = det(C);if rcond(C)<eps% fprintf(1,'Covariance matrix close to singular. (gaussian.m)\n'); p = zeros(N,1);else m=m(:); M=m*ones(1,N); denom=(2*pi)^(d/2)*sqrt(abs(detC)); mahal=sum(((x-M)'*inv(C)).*(x-M)',2); % Chris Bregler's trick numer=exp(-0.5*mahal); p=numer/denom;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -