⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 2005-0896.tex

📁 自动化学报的编辑软件
💻 TEX
📖 第 1 页 / 共 2 页
字号:
\xi_{n}})\|, \|\beta {\pmb g_{y}}({\pmb \xi_{n}})\|, \|\beta{\pmbg_{u}}({\pmb \xi_{n}})\|)$.From (1) and (2), we can get\begin{equation}\|\delta{\pmb x_{n}}(k)\|\leq k_{fx}\|\delta{\pmbx_{n}}(k-1)\|+k_{fy}\|{\pmb e_{n}}(k-1)\|\end{equation}From (2$'$) and (4$'$), we have\begin{equation}\begin{split}\|{\pmb e_{n}}(k)\|&\leq k_{gx}\|\delta{\pmbx_{n}}(k-1)\|+k_{gy}\|{\pmb e_{n}}(k-1)\| +\\&k_{gu}\|\delta{\pmbu_{n}}(k-1)\| \leq\\& k_{gx}\|\delta{\pmbx_{n}}(k-1)\|+k_{gy}\|{\pmb e_{n}}(k-1)\| +\\&k_{gu}(\|\delta{\pmbu_{n}^{b}}(k-1)\|+\|{\pmb u_{n}^{f}}(k-1)\|\end{split}\end{equation}By (9), we get\begin{equation}\begin{split}\|\delta{\pmb u_{n}^{b}}&(k)\|=\|{\pmb u_{d}}(k)-{\pmbu_{n}}(k-1)-\alpha{\pmb e_{n}}(k)\|=\\&\|{\pmb u_{d}}(k)-{\pmbu_{n}^{f}}(k-1)-{\pmb u_{n}^{b}}(k-1)-\alpha{\pmb e_{n}}(k)\|\leq\\&\|\delta{\pmb u_{n}^{b}}(k-1)\|+\|{\pmbu_{n}^{f}}(k-1)\|+\\&\alpha\|{\pmb e_{n}}(k)\|+\|\triangle{\pmbu_{d}}(k)\| \leq\\&\|\delta{\pmb u_{n}^{b}}(k-1)\|+\|{\pmbu_{n}^{f}}(k-1)\|+\\&\alpha[k_{gx}\|\delta{\pmb x_{n}}(k-1)\|+k_{gy}\|{\pmb e_{n}}(k-1)\| +\\&k_{gu}\|\delta{\pmbu_{n}^{b}}(k-1)\|+k_{gu}\|{\pmbu_{n}^{f}}(k-1)\|]\\&+\|\triangle{\pmb u_{d}}(k)\|=\\&(1+\alphak_{gu})(\|\delta{\pmb u_{n}^{b}}(k-1)\|+\|{\pmbu_{n}^{f}}(k-1)\|)+\\&\alpha k_{gx}\|\delta{\pmbx_{n}}(k-1)\|+\\&k_{gy}\|{\pmb e_{n}}(k-1)\|+\|\triangle{\pmbu_{d}}(k)\|\end{split}\end{equation}where $\triangle{\pmb u_{d}}(k)={\pmb u_{d}}(k)-{\pmb u_{d}}(k-1)$Adding (8), (9), and (10), using Assumption 2, gives\begin{equation}\begin{split}(\|\delta{\pmb x_{n}}&(k)\|+\|{\pmb e_{n}}(k)\|+\|\delta{\pmbu_{n}^{b}}(k)\|)\leq\\& \sigma_{2}(\|\delta{\pmbx_{n}}(k-1)\|+\\&\|{\pmb e_{n}}(k-1)\|+\|\delta{\pmbu_{n}^{b}}(k-1)\|)+\\&(k_{gu}+1+\alpha k_{gu})\|{\pmbu_{n}^{f}}(k-1)\|+\\&\|\triangle{\pmb u_{d}}(k)\|\leq\\&\ldots\leq\sigma_{2}^{k}(\|\delta{\pmb x_{n}}(0)\|+\|{\pmbe_{n}}(0)\| +\|\delta{\pmb u_{n}^{b}}(0)\|) +\\&(k_{gu}+1+\alphak_{gu})\sum_{i=0}^{k-1}\sigma_{2}^{k-i-1} \|{\pmbu_{n}^{f}}(i)\|+\\&\sum_{i=1}^{k}\sigma_{2}^{k-i}\|\triangle{\pmbu_{d}}(i)\|\leq\\&\sigma_{2}^{k}(\|\delta{\pmb x_{n}}(0)\|+\|{\pmbe_{n}}(0)\| +\|\delta{\pmb u_{n}^{b}}(0)\|)+\\&(k_{gu}+1+\alphak_{gu})\sum_{i=0}^{k-1}\sigma_{2}^{k-i-1} \|{\pmb u_{n}^{f}}(i)\|+\\&M\frac{\sigma_{2}^{K}-1}{\sigma_{2}-1}\end{split}\end{equation}where $\sigma_{2}=\sup_{k\in [0,K]}\{(k_{fx}+k_{gx}+\alpha k_{gx}),(k_{fy}+k_{gy}+\alpha k_{gy}), (k_{gu}+1+\alpha k_{gu})\},$ and$M=max_{k\in [0,K]}\|\triangle{\pmb u_{d}}(k)\|.$ Without loss ofgenerality, we will assume $\sigma_{2}>1$ for the followingdiscussions.Multiplying $\sigma_{2}^{-\lambda k}$ on both sides of (11) oninterval $[0,K]$ and then taking supreme norm, we have\begin{equation}\begin{split}(\|\delta{\pmb x_{n}}&(k)\|_{\lambda}+\|{\pmbe_{n}}(k)\|_{\lambda}+\|\delta{\pmbu_{n}^{b}}(k)\|_{\lambda})\leq\\&(\|\delta{\pmb x_{n}}(0)\|+\|{\pmbe_{n}}(0)\| +\|\delta{\pmb u_{n}^{b}}(0)\|)+\\&(k_{gu}+1+\alphak_{gu})\|{\pmbu_{n}^{f}}(k)\|_{\lambda}\frac{1-\sigma_{2}^{-(\lambda-1)K}}{\sigma_{2}^{\lambda}-{\sigma_{2}}}+\\&M\frac{\sigma_{2}^{K}-1}{\sigma_{2}-1}\end{split}\end{equation}Inserting (12) into (7) gives\begin{equation}\begin{split}\|{\pmb u_{n+1}^{f}}&(k)\|_{\lambda}\leq\|(1-\beta g_{u}({\pmb\xi_{n}}))\| \|{\pmbu_{n}^{f}}(k)\|_{\lambda}+\\&\sigma_{1}(\|\delta{\pmb x_{n}}(0)\|+\|{\pmb e_{n}}(0)\|+\|\delta{\pmb u_{n}^{b}}(0)\|)+\\&\sigma_{1}(k_{gu}+1+\alpha k_{gu})\|{\pmbu_{n}^{f}}(k)\|_{\lambda}\frac{1-\sigma_{2}^{-(\lambda-1)K}}{\sigma_{2}^{\lambda}-{\sigma_{2}}}+\\&\sigma_{1}M\frac{\sigma_{2}^{K}-1}{\sigma_{2}-1}\end{split}\end{equation}Equation (13) can be rewritten as\begin{equation}\begin{split}\|{\pmb u_{n+1}^{f}}&(k)\|_{\lambda}\leq[\|(1-\beta g_{u}({\pmb\xi_{n}}))\| +\\&\sigma_{1}(k_{gu}+1+\alphak_{gu})\frac{1-\sigma_{2}^{-(\lambda-1)K}}{\sigma_{2}^{\lambda}-{\sigma_{2}}}]\|{\pmbu_{n}^{f}}(k)\|_{\lambda}+\\&\sigma_{1}(\|\delta{\pmbx_{n}}(0)\|+\|{\pmb e_{n}}(0)\|+\|\delta{\pmb u_{n}^{b}}(0)\|)+\\&\sigma_{1}M\frac{\sigma_{2}^{K}-1}{\sigma_{2}-1}\end{split}\end{equation}Choosing a sufficiently large constant $\lambda$ such that thefollowing inequality holds when contractive condition $\|(1-\betag_{u}({\pmb \xi_{n}}))\|<1$ is satisfied,\begin{equation}\begin{split}\|(1-\beta g_{u}({\pmb \xi_{n}}))\|&+\sigma_{1}(k_{gu}+1+\alphak_{gu})\frac{1-\sigma_{2}^{-(\lambda-1)K}}{\sigma_{2}^{\lambda}-{\sigma_{2}}}\\&\leq\rho<1\end{split}\end{equation}then (14) gives\begin{equation}\|{\pmb u_{n+1}^{f}}(k)\|_{\lambda}\leq\rho\|{\pmbu_{n}^{f}}(k)\|_{\lambda}+\varepsilon,\end{equation}where $\varepsilon=\sigma_{1}(\|\delta{\pmb x_{n}}(0)\|+\|{\pmbe_{n}}(0)\| +\|\delta{\pmbu_{n}^{b}}(0)\|)+\sigma_{1}M\frac{\sigma_{2}^{K}-1}{\sigma_{2}-1}.$Equation (16) means\begin{equation}\lim_{n \to \infty}\|{\pmbu_{n+1}^{f}}(k)\|_{\lambda}\leq\frac{\varepsilon}{1-\rho}\end{equation}From (12), we can obtain\begin{equation}\begin{split}\lim_{n \to \infty}&(\|\delta{\pmb x_{n}}(k)\|_{\lambda}+\|{\pmbe_{n}}(k)\|_{\lambda} +\|\delta{\pmbu_{n}^{b}}(k)\|_{\lambda})\leq\\&(\|\delta{\pmb x_{n}}(0)\|+\|{\pmbe_{n}}(0)\| +\|\delta{\pmb u_{n}^{b}}(0)\|) +\\&(k_{gu}+1+\alphak_{gu})\frac{1-\sigma_{2}^{-(\lambda-1)K}}{\sigma_{2}^{\lambda}-{\sigma_{2}}}\lim_{n \to \infty}\|{\pmbu_{n}^{f}}(k)\|_{\lambda}+\\&M\frac{\sigma_{2}^{K}-1}{\sigma_{2}-1}\end{split}\end{equation}Then from (17), (18), we can reach the conclusion of thistheorem.\hfill$\square${\bf Remark 1.} This theorem reveals that the ILC component willplay a complementary role in control design, while the feedbackcomponent plays the dominant role.{\bf Remark 2.} Note that the learning controller design isindependent of the feedback controller. Hence the closed-loopcharacteristics will not be changed by the addition of the ILC part.Thus, whenever necessary, we can simply switch off either of thecontrol module and the remaining one will still work well.{\bf Remark 3.} By Theorem 2, $\|{\pmb u_{n}^{f}}(k)\|_{\lambda} \to0$ when the convergence is obtained. This implies that the controlsystem will be dominated by the feedback controller, and the ILCfeedforward is equivalently off.{\bf Remark 4.} The underlying idea of this new feedback/feedforward configuration is to learn and reject the repeatable andnon-repeatable uncertainties. Learning mechanism is designed toidentify all those repeatable components and leave the remainingunknown iteration-dependent components to the feedback controlscheme.{\bf Remark 5.} The effectiveness, and the advantages, compared withthose of [7], of the proposed iterative learning controller and theILC add-on to the feedback controller have been verified throughintensive simulations. Here the results are omited just due to thelimitation of paper length.\section{Conclusion}A discrete iterative learning controller with a newfeedforward-feedback configuration in which the iterative learningcontrol is add-on to the feedback controller is proposed for thediscrete-time nonlinear time-varying systems with initial stateerror and initial output error. A systematic approach is developedto analyze the convergence of the learning system. It is shown thatthe feedforward ILC component add-on to the feedback controller doesnot change any closed loop characteristics and the feedbackcontroller still play the dominant role in the combined controlstrategy. Furthermore, it is noted that the learning controllerdesign is completely decoupled from the feedback controller. Thefeedback controller and ILC can work concurrently as two independentmodules without interfering with each others. Whenever necessary, wecan simply switch off one control module and the remaining one willstill work well. It is a perfect modularized fashion in controlsystem design.\begin{thebibliography}{99}\zihao{6} \addtolength{\itemsep}{-0.6em} \urlstyle{rm}\bibitem{1}  Arimoto S, Kawamura S, Miyazaki F. Bettering operationof robots by learning. {\sl Journal of Robotic Systems}, 1984, {\bf1}(2): 123--140%\bibitem{2} Hwang D H, Bien Z, Oh S R. Iterative learning controlmethod for discrete-time dynamic systems. {\sl IEE ProceedingsAlgorithms, Control Systems, Control Theory}, 1991, {\bf 138}(2):139--144%\bibitem{3} Jang, T J, Ahn H S, Choi, C H. Iterative learning controlfor discrete time nonlinear systems. {\sl International Journal ofSystems Science}, 1994, {\bf 25}(7), 1179--1189%\bibitem{4} Chen Y C, Wen C Y. Iterative learning control:convergence robustness and applications. {\sl Lecture Notes inControl and Information Sciences}. Springer, 1999. {\bf 248}%\bibitem{5} Xu J X. Analysis of iterative learning control fora class of nonlinear discrete-time systems. {\sl Automatica}, 1997,{\bf 33}(10): 1905--1907%\bibitem{6} Chien C J, Liu, J S. A P-type iterative learning controllerfor robust output tracking of nonlinear time-varying systems. {\slInternational Journal of Control}, 1996, {\bf 64} (2): 319--334%\bibitem{7} Chen C J. A discrete iterative learning control for a class ofnonlinear time-varying systems. {\sl IEEE Transactions on AutomaticControl}, 1998, {\bf 43}(5): 748--752%\bibitem{8} Atkeson C G, McIntyre J. Robot trajectory learning through practice. In:Proceedings of 1986 IEEE International Conference on Robot andAutomatic Conference. IEEE, 1986. 1737--1742%\bibitem{9} Kuc T Y, Lee J S, Nam K. An iterative learning control theoryfor a class of nonlinear dynamic systems. {\sl Automatica}, 1992,{\bf 28}(6): 1215--1221%\bibitem{10} Jang T J, Choi C H, Ahn H S. Iterative learning controlin feedback systems. {\sl Automatica}, 1995, {\bf 31}(2): 243--248%\bibitem{11} Xu J X, Tan Y. Linear and nonlinear iterative learningcontrol. {\sl Lecture Notes in Control and Information Sciences}.Springer, 2003. {\bf 291}%\bibitem{12} Xu J X, Cao W J. Learning variable structure control approachesfor repeatable tracking control tasks. {\sl Automatica}, 2001, {\bf37}(7): 997--1006%\bibitem{13} Tan K K, Tang J C. Learning-enhanced PI control of ramvelocityin injection molding machines. {\sl Engineering Applications ofArtificial Intelligence}, 2002, {\bf 15}(1): 65--72\bibitem{14} Hou Z S, Xu J X, Zhong H W. Freewat traffic controlusing iterative learning control based remp metering and speedsignaling. {\sl IEEE Transactions on Vehicular Technology, to bepublished.}\end{thebibliography}\begin{biographynophoto}\noindent{\bf HOU Zhong-Sheng}\quad Received his bachelor and masterdegrees in applied mathematics from Jilin University of Technologyin 1983 and 1988 respectively, and the Ph.\,D. degree in controltheory from Northeastern University in 1994. He was a postdoctoralfellow at the Harbin Institute of Technology from 1995 to 1997, anda visiting scholar in the Yale University, USA, from 2002 to 2003.In 1997, he joined the Beijing Jiaotong University and is currentlya director and professor in the Advanced Control Systems Laboratoryof the School of Electronics and Information Engineering. Hisresearch interest covers model-free adaptive control, learningcontrol, and intelligent transportation systems. Correspondingauthor of this paper. \\E-mail: houzhongsheng@china.com\end{biographynophoto}\begin{biographynophoto}\noindent{\bf XU Jian-Xin} \quad Received his master and Ph.\,D.degrees from University of Tokyo, Japan in 1986 and 1989,respectively. He is currently an associate professor in theDepartment of Electrical Engineering at the National University ofSingapore. His research interest lies learning control and variablestructure control and so on. E-mail: elexujx@nus.edu.sg\end{biographynophoto}\end{document}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -