⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 blk_mdlg.m

📁 Least Mean Square Newton Algorithm
💻 M
字号:
%
%	Modeling: Comparison of the conventional LMS and BLMS algorithm.
%            (Time-domain implementation)
%
%
% Last updated on April 28, 1998
%

itn=input('\n No. of iterations?      ');
sigman2=input('\n Variance of the plant noise?      ');
sigman=sqrt(sigman2);
wo=input('\n Plant impulse response (vector, w_o)?      ');
a=size(wo);
if a(1)<a(2)
   wo=wo';
end

N=input('\n Length of the model (N)?      ');
L=input('\n Block length (L)?     ')

h=input('\n Coloring filter impulse response (vector, h)?     ');
a=size(h);
if a(1)<a(2)
   h=h';
end

Misad=input('\n Misadjustment (e.g., 0.1 for 10%) ?     ');
mu=Misad/(N*(h'*h));

a=input('\n Do you wish to see the values of \n      eigenvalue spread, expected MSE, ... (Y/N)?      ','s');
if (a=='y')|(a=='Y')
   MMSE=sigman2;
   R=corlnm2(h,N);
   lambda=eig(R);
   eignsprd=max(lambda)/min(lambda);
   taumax=1/(4*mu*min(lambda));
   taumin=1/(4*mu*max(lambda));
   MSEaprx=MMSE*(1+Misad);
   disp(' ')
   disp(' ')
   disp([' Eigenvalue spread = ' num2str(eignsprd)])
   disp([' Maximum time constant of the learning curve = ' num2str(taumax)])
   disp([' Minimum time constant of the learning curve = ' num2str(taumin)])
   disp([' Expected steady-state MSE = ' num2str(MSEaprx)])
end

runs=input('\n \n No. of runs (for ensemble averaging)? ');

mu=Misad/(N*(h'*h));
muB=L*mu;
xi=zeros(itn,1);
xiB=zeros(itn,1);

for k=1:runs
	x=filter(h,1,randn(itn,1));
	d=filter(wo,1,x)+sigman*randn(itn,1);
	w=zeros(N,1);
	
	counter=0;
	XB=zeros(L,N);
	dB=zeros(L,1);
	wB=w;

	for n=N:itn;
		xtdl=x(n:-1:n-N+1);
		e=d(n)-w'*xtdl;
		w=w+2*mu*e*xtdl;
		xi(n)=xi(n)+e^2;

		counter=counter+1;
		XB(counter,:)=xtdl';
		dB(counter)=d(n);
		if counter==L
			eB=dB-XB*wB;
			wB=wB+2*(muB/L)*(XB'*eB);
			xiB(n:-1:n-L+1)=xiB(n:-1:n-L+1)+ones(L,1)*(eB'*eB)/L;
			counter=0;
		end
	end
end
xi=xi/runs;
xiB=xiB/runs;
n=[1:itn];
semilogy(n,xi,'b',n,xiB,'r')
title('blue curve: conventional LMS;   red curve: BLMS') 
xlabel('NO. OF ITERATIONS')
ylabel('MSE')

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -