📄 icp.m
字号:
function [TR, TT] = icp(model,data,max_iter,min_iter,fitting,thres,init_flag,tes_flag,refpnt)
% ICP Iterative Closest Point Algorithm. Takes use of
% Delaunay tesselation of points in model.
%
% Ordinary usage:
%
% [R, T] = icp(model,data)
%
% ICP fit points in data to the points in model.
% Fit with respect to minimize the sum of square
% errors with the closest model points and data points.
%
% INPUT:
%
% model - matrix with model points, [Pm_1 Pm_2 ... Pm_nmod]
% data - matrix with data points, [Pd_1 Pd_2 ... Pd_ndat]
%
% OUTPUT:
%
% R - rotation matrix and
% T - translation vector accordingly so
%
% newdata = R*data + T .
%
% newdata are transformed data points to fit model
%
%
% Special usage:
%
% icp(model) or icp(model,tes_flag)
%
% ICP creates a Delaunay tessellation of points in
% model and save it as global variable Tes. ICP also
% saves two global variables ir and jc for tes_flag=1 (default) or
% Tesind and Tesver for tes_flag=2, which
% makes it easy to find in the tesselation. To use the global variables
% in icp, put tes_flag to 0.
%
%
% Other usage:
%
% [R, T] = icp(model,data,max_iter,min_iter,...
% fitting,thres,init_flag,tes_flag)
%
% INPUT:
%
% max_iter - maximum number of iterations. Default=104
%
% min_iter - minimum number of iterations. Default=4
%
% fitting - =2 Fit with respect to minimize the sum of square errors. (default)
% alt. =[2,w], where w is a weight vector corresponding to data.
% w is a vector of same length as data.
% Fit with respect to minimize the weighted sum of square errors.
% =3 Fit with respect to minimize the sum to the amount 0.95
% of the closest square errors.
% alt. =[3,lambda], 0.0<lambda<=1.0, (lambda=0.95 default)
% In each iteration only the amount lambda of the closest
% points will affect the translation and rotation.
% If 1<lambda<=size(data,2), lambda integer, only the number lambda
% of the closest points will affect the translation and
% rotation in each iteration.
%
% thres - error differens threshold for stop iterations. Default 1e-5
%
% init_flag - =0 no initial starting transformation
% =1 transform data so the mean value of
% data is equal to mean value of model.
% No rotation. (init_flag=1 default)
%
% tes_flag - =0 No new tesselation has to be done. There
% alredy exists one for the current model points.
% =1 A new tesselation of the model points will
% be done. (default)
% =2 A new tesselation of the model points will
% be done. Another search strategy than tes_flag=1
% =3 The closest point will be find by testing
% all combinations. No Delaunay tesselation will be done.
%
% refpnt - (optional) (An empty vector is default.) refpnt is a point corresponding to the
% set of model points wich correspondig data point has to be find.
% How the points are weighted depends on the output from the
% function weightfcn found in the end of this m-file. The input in weightfcn is the
% distance between the closest model point and refpnt.
%
% To clear old global tesselation variables run: "clear global Tes ir jc" (tes_flag=1)
% or run: "clear global Tes Tesind Tesver" (tes_flag=2) in Command Window.
%
% m-file can be downloaded for free at
% http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12627&objectType=FILE
%
% icp version 1.4
%
% written by Per Bergstr鰉 2007-03-07
if nargin<1
error('To few input arguments!');
elseif or(nargin==1,nargin==2)
bol=1;
refpnt=[];
if nargin==2
if isempty(data)
tes_flag=1;
elseif isscalar(data)
tes_flag=data;
if not(tes_flag==1 | tes_flag==2)
tes_flag=1;
end
else
bol=0;
end
else
tes_flag=1;
end
if bol
global MODEL
if isempty(model)
error('Model can not be an empty matrix.');
end
if (size(model,2)<size(model,1))
MODEL=model';
TR=eye(size(model,2));
TT=zeros(size(model,2),1);
else
MODEL=model;
TR=eye(size(model,1));
TT=zeros(size(model,1),1);
end
if (size(MODEL,2)==size(MODEL,1))
error('This icp method demands the number of MODEL points to be greater then the dimension.');
end
icp_struct(tes_flag);
return
end
end
global MODEL DATA TR TT
if isempty(model)
error('Model can not be an empty matrix.');
end
if (size(model,2)<size(model,1))
MODEL=model';
else
MODEL=model;
end
if (size(data,2)<size(data,1))
data=data';
DATA=data;
else
DATA=data;
end
if size(DATA,1)~=size(MODEL,1)
error('Different dimensions of DATA and MODEL!');
end
if nargin<9
refpnt=[];
if nargin<8
tes_flag=1;
if nargin<7
init_flag=1;
if nargin<6
thres=1e-5; % threshold to icp iterations
if nargin<5
fitting=2; % fitting method
if nargin<4
min_iter=4; % min number of icp iterations
if nargin<3
max_iter=104; % max number of icp iterations
end
end
end
end
end
end
elseif nargin>9
warning('Too many input arguments!');
end
if isempty(tes_flag)
tes_flag=1;
elseif not(tes_flag==0 | tes_flag==1 | tes_flag==2 | tes_flag==3)
init_flag=1;
warning('init_flag has been changed to 1');
end
if and((size(MODEL,2)==size(MODEL,1)),tes_flag~=0)
error('This icp method demands the number of model points to be greater then the dimension.');
end
if isempty(min_iter)
min_iter=4;
end
if isempty(max_iter)
max_iter=100+min_iter;
end
if max_iter<min_iter;
max_iter=min_iter;
warning('max_iter<min_iter , max_iter has been changed to be equal min_iter');
end
if min_iter<0;
min_iter=0;
warning('min_iter<0 , min_iter has been changed to be equal 0');
end
if isempty(thres)
thres=1e-5;
elseif thres<0
thres=abs(thres);
warning('thres negative , thres have been changed to -thres');
end
if isempty(fitting)
fitting=2;
elseif fitting(1)==2
[fi1,fi2]=size(fitting);
lef=max([fi1,fi2]);
if lef>1
if fi1<fi2
fitting=fitting';
end
if lef<(size(data,2)+1)
warning('Illegeal size of fitting! Unweighted minimization will be used.');
fitting=2;
elseif min(fitting(2:(size(data,2)+1)))<0
warning('Illegeal value of the weights! Unweighted minimization will be used.');
fitting=2;
elseif max(fitting(2:(size(data,2)+1)))==0
warning('Illegeal values of the weights! Unweighted minimization will be used.');
fitting=2;
else
su=sum(fitting(2:(size(data,2)+1)));
fitting(2:(size(data,2)+1))=fitting(2:(size(data,2)+1))/su;
thres=thres/su;
end
end
elseif fitting(1)==3
if length(fitting)<2
fitting=[fitting,round(0.95*size(data,2))];
elseif fitting(2)>1
if fitting(2)>floor(fitting(2))
fitting(2)=floor(fitting(2));
warning(['lambda has been changed to ',num2str(fitting(2)),'!']);
end
if fitting(2)>size(data,2)
fitting(2)=size(data,2);
warning(['lambda has been changed to ',num2str(fitting(2)),'!']);
end
elseif fitting(2)>0
if fitting(2)<=0.5
warning('lambda small. Troubles might occur!');
end
fitting(2)=round(fitting(2)*size(data,2));
elseif fitting(2)<=0
fitting(2)=round(0.95*size(data,2));
warning(['lambda has been changed to ',num2str(fitting(2)),'!']);
end
else
fitting=2;
warning('fitting has been changed to 2');
end
if isempty(init_flag)
init_flag=1;
elseif not(init_flag==0 | init_flag==1)
init_flag=1;
warning('init_flag has been changed to 1');
end
if (size(refpnt,2)>size(refpnt,1))
refpnt=refpnt';
end
if (size(refpnt,1)~=size(DATA,1))
if not(isempty(refpnt))
refpnt=[];
warning('Dimension of refpnt dismatch. refpnt is put to [] (empty matrix).');
end
end
if (size(refpnt,2)>1)
refpnt=refpnt(:,1);
warning('Only the first point in refpnt is used.');
end
% Start the ICP algorithm
N = size(DATA,2);
icp_init(init_flag,fitting); % initiate a starting rotation matrix and starting translation vector
tes_flag=icp_struct(tes_flag); % construct a Delaunay tesselation and two vectors make it easy to find in Tes
ERROR=icp_closest_start(tes_flag,fitting); % initiate a vector with indices of closest MODEL points
icp_transformation(fitting,[]); % find transformation
DATA = TR*data; % apply transformation
DATA=DATA+repmat(TT,1,N); %
for iter=1:max_iter
olderror = ERROR;
ERROR=icp_closest(tes_flag,fitting); % find indices of closest MODEL points and total error
if iter<min_iter
icp_transformation(fitting,[]); % find transformation
else
icp_transformation(fitting,refpnt); % find transformation
end
DATA = TR*data; % apply transformation
DATA=DATA+repmat(TT,1,N); %
if iter>=min_iter
if abs(olderror-ERROR) < thres
break
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function icp_init(init_flag,fitting)
%function icp_init(init_flag)
%ICP_INIT Initial alignment for ICP.
global MODEL DATA TR TT
if init_flag==0
TR=eye(size(MODEL,1));
TT=zeros(size(MODEL,1),1);
elseif init_flag==1
N = size(DATA,2);
if fitting(1)==2
if length(fitting)==1
mem=mean(MODEL,2); med=mean(DATA,2);
else
mem=MODEL*fitting(2:(N+1)); med=DATA*fitting(2:(N+1));
end
else
mem=mean(MODEL,2); med=mean(DATA,2);
end
TR=eye(size(MODEL,1));
TT=mem-med;
DATA=DATA+repmat(TT,1,N); % apply transformation
else
error('Wrong init_flag');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function tes_flag=icp_struct(tes_flag)
if tes_flag==0
global ir
if isempty(ir)
global Tesind
if isempty(Tesind)
error('No tesselation system exists');
else
tes_flag=2;
end
else
tes_flag=1;
end
elseif tes_flag==3
return
else
global MODEL Tes
[m,n]=size(MODEL);
if m==1
[so1,ind1]=sort(MODEL);
Tes=zeros(n,2);
Tes(1:(n-1),1)=ind1(2:n)';
Tes(2:n,2)=ind1(1:(n-1))';
Tes(1,2)=Tes(1,1);
Tes(n,1)=Tes(n,2);
Tes(ind1,:)=Tes(:,:);
else
Tes=delaunayn(MODEL');
if isempty(Tes)
mem=mean(MODEL,2);
MODELm=MODEL-repmat(mem,1,n);
[U,S,V]=svd(MODELm*MODELm');
onbasT=U(:,diag(S)>1e-8)'
MODELred=onbasT*MODEL;
if size(MODELred,1)==1
[so1,ind1]=sort(MODELred);
Tes=zeros(n,2);
Tes(1:(n-1),1)=ind1(2:n)';
Tes(2:n,2)=ind1(1:(n-1))';
Tes(1,2)=Tes(1,1);
Tes(n,1)=Tes(n,2);
Tes(ind1,:)=Tes(:,:);
else
Tes=delaunayn(MODELred');
end
end
end
Tes=sortrows(sort(Tes,2));
[mT,nT]=size(Tes);
if tes_flag==1
global ir jc
num=zeros(1,n);
for i=1:mT
for j=1:nT
num(Tes(i,j))=num(Tes(i,j))+1;
end
end
num=cumsum(num);
jc=ones(1,n+1);
jc(2:end)=num+jc(2:end);
ir=zeros(1,num(end));
ind=jc(1:(end-1));
%% calculate ir;
for i=1:mT
for j=1:nT
ir(ind(Tes(i,j)))=i;
ind(Tes(i,j))=ind(Tes(i,j))+1;
end
end
else % tes_flag==2
global Tesind Tesver
Tesind=zeros(mT,nT);
Tesver=zeros(mT,nT);
couvec=zeros(mT,1);
for i=1:(mT-1)
for j=(i+1):mT
if couvec(i)==nT
break;
elseif Tes(i,1)==Tes(j,1)
if nT==2
Tesind(i,2)=j;
Tesind(j,2)=i;
Tesver(i,2)=2;
Tesver(j,2)=2;
couvec(i)=couvec(i)+1;
couvec(j)=couvec(j)+1;
else
for k=2:nT
for kk=k:nT
if all(Tes(i,[2:(k-1),(k+1):nT])==Tes(j,[2:(kk-1),(kk+1):nT]))
Tesind(i,k)=j;
Tesind(j,kk)=i;
Tesver(i,k)=kk;
Tesver(j,kk)=k;
couvec(i)=couvec(i)+1;
couvec(j)=couvec(j)+1;
end
end
if or(couvec(i)==nT,couvec(j)==nT)
break
end
end
end
elseif Tes(i,1)==Tes(j,2)
if nT==2
Tesind(i,2)=j;
Tesind(j,1)=i;
Tesver(i,2)=1;
Tesver(j,1)=2;
couvec(i)=couvec(i)+1;
couvec(j)=couvec(j)+1;
else
for k=2:nT
if all(Tes(i,[2:(k-1),(k+1):nT])==Tes(j,3:nT))
Tesind(i,k)=j;
Tesind(j,1)=i;
Tesver(i,k)=1;
Tesver(j,1)=k;
couvec(i)=couvec(i)+1;
couvec(j)=couvec(j)+1;
end
if or(couvec(i)==nT,couvec(j)==nT)
break
end
end
end
elseif Tes(i,2)==Tes(j,1)
if nT==2
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -