⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gmsppf.m

📁 递归贝叶斯估计的工具包
💻 M
字号:
function [estimate, ParticleFilterDS, pNoise, oNoise, extra] = gmsppf(ParticleFilterDS, pNoise, oNoise, obs, U1, U2, InferenceDS)% GMSPPF  Gaussian Mixture Sigma-Point Particle Filter%%   [estimate, ParticleFilterDS, pNoise, oNoise] = gmsppf(ParticleFilterDS, pNoise, oNoise, obs, U1, U2, InferenceDS)%%   This filter assumes the following standard state-space model:%%     x(k) = ffun[x(k-1),v(k-1),U1(k-1)]%     y(k) = hfun[x(k),n(k),U2(k)]%%   where x is the system state, v the process noise, n the observation noise, u1 the exogenous input to the state%   transition function, u2 the exogenous input to the state observation function and y the noisy observation of the%   system.%%   INPUT%         ParticleFilterDS     Particle filter data structure. (see field definitions below)%         pNoise               (NoiseDS) process noise data structure  (must be of type 'gmm')%         oNoise               (NoiseDS) observation noise data structure%         obs                  noisy observations starting at time k ( y(k),y(k+1),...,y(k+N-1) )%         U1                   exogenous input to state transition function starting at time k-1 ( u1(k-1),u1(k),...,u1(k+N-2) )%         U2                   exogenous input to state observation function starting at time k  ( u2(k),u2(k+1),...,u2(k+N-1) )%         InferenceDS          Inference data structure generated by GENINFDS function.%%   OUTPUT%         estimate             State estimate generated from posterior distribution of state given all observation. Type of%                              estimate is specified by InferenceDS.estimateType%         ParticleFilterDS     Updated Particle filter data structure.%         pNoise               process noise data structure     (possibly updated)%         oNoise               observation noise data structure (possibly updated)%%   ParticleFilterDS fields:%         .N                   (scalar) number of particles to use%         .stateGMM            (gmm) Gaussian mixture model of state distribution with the following field:%                  .M            (scalar) number of mixture components in GMM%                  .mu           (statedim-by-M) buffer of mean vectors (centroids) of state GMM components%                  .cov          (statedim-by-statedim-my-M) buffer of covariance matrices of state GMM components%                  .cov_type     (string) covariance matrix type ('full','sqrt','diag','swrt-diag') 'sqrt' is preferred.%                  .weights      (1-by-M) state GMM component weights (priors)%%   Required InferenceDS fields:%         .spkfType            (string) Type of SPKF to use (srukf or srcdkf).%         .estimateType        (string) Estimate type : 'mean', 'mode', etc.%%   NOTE : All covariances are assumed to be of type 'sqrt', i.e. Cholesky factors.%%   See also%   PF, SPPF, GSPF%   Copyright  (c) Rudolph van der Merwe (2002)%%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for%   academic use only (see included license file) and can be obtained by contacting%   rvdmerwe@ece.ogi.edu.  Businesses wishing to obtain a copy of the software should%   contact ericwan@ece.ogi.edu for commercial licensing information.%%   See LICENSE (which should be part of the main toolkit distribution) for more%   detail.%=============================================================================================if (nargin ~= 7) error(' [ gmsppf ] Not enough input arguments.'); endswitch pNoise.ns_typecase 'gmm'otherwise  error(' [ gmsppf ] Process noise source must be of type : gmm (Gaussian Mixture Model)');endswitch oNoise.ns_typecase 'gmm'otherwise  error(' [ gmsppf ] Observation noise source must be of type : gmm (Gaussian Mixture Model)');endXdim  = InferenceDS.statedim;                            % extract state dimensionOdim  = InferenceDS.obsdim;                              % extract observation dimensionU1dim = InferenceDS.U1dim;                               % extract exogenous input 1 dimensionU2dim = InferenceDS.U2dim;                               % extract exogenous input 2 dimensionVdim  = InferenceDS.Vdim;                                % extract process noise dimensionNdim  = InferenceDS.Ndim;                                % extract observation noise dimensionnumP = ParticleFilterDS.N;            % number of particles to use for SIRstateGMM = ParticleFilterDS.stateGMM;G    = stateGMM.M;      % number of components in state GMMK    = pNoise.M;        % number of components in process noise GMMR    = oNoise.M;        % number of components in observation noise GMMGK  = G*K;GKR = GK*R;stateWPrior   = zeros(1,GK);stateMuPrior  = zeros(Xdim,GK);stateCovPrior = zeros(Xdim,Xdim,GK);stateWNew     = zeros(1,GKR);stateMuNew    = zeros(Xdim,GKR);stateCovNew   = zeros(Xdim,Xdim,GKR);stateMu  = stateGMM.mu;stateCov = stateGMM.cov;stateW   = stateGMM.weights;pNoiseW  = pNoise.weights;oNoiseW  = oNoise.weights;cov_type = stateGMM.cov_type;switch cov_typecase {'full','diag'}  error(' [ gspf ] Currently the GSPF algorithm only support state GMMs which has ''sqrt'' covariance types.');endones_numP = ones(numP,1);ones_Xdim = ones(1,Xdim);ones_GK   = ones(GK,1);ones_GKR  = ones(GKR,1);NOV = size(obs,2);                                       % number of input vectorsif (U1dim==0), UU1=zeros(0,numP); Utemp1=[]; endif (U2dim==0), UU2=zeros(0,numP); Utemp2=[]; endestimate   = zeros(Xdim,NOV);normfactO = (2*pi)^(Odim/2);pNoiseSPKF = struct('mu',zeros(Vdim,1),'cov',zeros(Vdim),'adaptMethod',[]);oNoiseSPKF = struct('mu',zeros(Ndim,1),'cov',zeros(Ndim),'adaptMethod',[]);if (nargout > 4)  extra.mu  = zeros(Xdim,G,NOV);  extra.cov = zeros(Xdim,Xdim,G,NOV);  extra.weights = zeros(1,G,NOV);end%================================================================================================%--- MAIN LOOP over all data vectorsfor i=1:NOV,    OBStemp = obs(:,i);                % inline cvecrep    OBS = OBStemp(:,ones_numP);    if U1dim      Utemp1 = U1(:,i);      UU1 = Utemp1(:,ones_numP);        % inline cvecrep    end    if U2dim      Utemp2 = U2(:,i);      UU2 = Utemp2(:,ones_numP);        % inline cvecrep    end    %-----------------------------------------------------------------------    % TIME UPDATE    for r=1:R,        oNoiseSPKF.mu = oNoise.mu(:,r);        oNoiseSPKF.cov = oNoise.cov(:,:,r);        for k=1:K,            pNoiseSPKF.mu  = pNoise.mu(:,k);            pNoiseSPKF.cov = pNoise.cov(:,:,k);            for g=1:G,                a = g + (k-1)*G;                j = a + (r-1)*(GK);                switch InferenceDS.spkfType                case 'srukf'                  [stateMuNew(:,j),stateCovNew(:,:,j),pNoiseSPKF,oNoiseSPKF,intvarDS] = ...                    srukf(stateMu(:,g), stateCov(:,:,g), pNoiseSPKF, oNoiseSPKF, OBStemp, Utemp1, Utemp2, InferenceDS);                case 'srcdkf'                  [stateMuNew(:,j),stateCovNew(:,:,j),pNoiseSPKF,oNoiseSPKF,intvarDS] = ...                    srcdkf(stateMu(:,g), stateCov(:,:,g), pNoiseSPKF, oNoiseSPKF, OBStemp, Utemp1, Utemp2, InferenceDS);                otherwise                    error(' [ gmsppf ] Unknown SPKF type.');                end                stateMuPrior(:,a)    = intvarDS.xh_;                stateCovPrior(:,:,a) = intvarDS.Sx_;                inov = intvarDS.inov;                S    = intvarDS.Sinov;                stateWPrior(1,a) = stateW(1,g)*pNoiseW(1,k);                foo1 = S \ inov;                foo2 = exp(-0.5*foo1'*foo1) / abs(normfactO*prod(diag(S))) + 1e-99;                stateWNew(1,j)   = stateWPrior(1,a)*oNoiseW(1,r) * foo2;            end        end    end    stateWPrior = stateWPrior / sum(stateWPrior);    stateWNew   = stateWNew / sum(stateWNew);    %-----------------------------------------------------------------------    % MEASUREMENT UPDATE    % build temporary state GMM's    priorStateGMM = struct('cov_type',cov_type,'mu',stateMuPrior,'cov',stateCovPrior,'weights',stateWPrior,'dim',Xdim,'M',GK);    newStateGMM = struct('cov_type',cov_type,'mu',stateMuNew,'cov',stateCovNew,'weights',stateWNew,'dim',Xdim,'M',GKR);    % Draw samples from the Gaussian Mixture proposal    XsampleBuf = gmmsample(newStateGMM,numP);    % evaluate likelihood of each particle under the transition prior (have to average over distribution of X_k-1)    [p1,p2,prior] = gmmprobability(priorStateGMM, XsampleBuf);    % calculate observation likelihood for each particle    likelihood = feval(InferenceDS.likelihood, InferenceDS, OBS, XsampleBuf, UU2, oNoise) + 1e-99;    % evaluate likelihood of each particle under the proposal density    [p1,p2,proposal] = gmmprobability(newStateGMM, XsampleBuf);    % calculate importance weights    sampleW = (likelihood.*prior)./proposal;    sampleW = sampleW./sum(sampleW);    %-----------------------------------------------------------------------    % CALCULATE ESTIMATE    %switch InferenceDS.estimateType    %case 'mean'    %    estimate(:,i) = XsampleBuf*sampleW';    %case 'GMMmean'    %    estimate(:,i) = stateMuNew*stateWNew';    %otherwise    %    error(' [ gmsppf ] Unknown estimate type.');    %end    estimate(:,i) = XsampleBuf*sampleW';    %-----------------------------------------------------------------------    % RESAMPLE    outIndex  = residualresample(1:numP,sampleW);    XsampleBuf = XsampleBuf(:,outIndex); % + eps*randn(Xdim,numP);    sampleW = repmat(1/numP,1,numP);    %-----------------------------------------------------------------------    % Recover GMM representation of posterior distribution using EM    ParticleFilterDS.particles = XsampleBuf;    ParticleFilterDS.weights = sampleW;    stateGMM = gmmfit(XsampleBuf, stateGMM, [0.001 10], cov_type, 1, 0);    stateMu  = stateGMM.mu;    stateCov = stateGMM.cov;    stateW   = stateGMM.weights;    if pNoise.adaptMethod        error('  [ gmsppf ] Process noise adaptation not supported yet for GMM noise sources.');    end    if (nargout > 4)      extra.mu(:,:,i) = stateMu;      extra.cov(:,:,:,i) = stateCov;      extra.weights(:,:,i) = stateW;      extra.P = zeros(Xdim,Xdim);      est = estimate(:,i);      for kk=1:G,        cS  = stateCov(:,:,kk);        ttt = est-stateMu(:,kk);        extra.P = extra.P + stateW(kk)*(cS*cS' + ttt*ttt');      end    end%--------------------------------------------------------------------------end     %.. loop over input vectorsParticleFilterDS.stateGMM = stateGMM;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -