📄 mlppack.m
字号:
function [wh, nodes] = mlppack(W1, B1, W2, B2, W3, B3, W4, B4)% MLPPACK ReBEL MLP neural network weight matrices vectorizer.%% This function packs the parameters (weights and biases) of ReBEL MLP neural network% into a single vector. The network can have between 2, 3 or 4 layers.%% [wh, nodes] = mlppack(W1, B1, W2, B2, W3, B3, W4, B4)%% INPUT% W1 : layer 1 weights% B1 : layer 1 biases% W2 : layer 2 weights% B2 : layer 2 biases% W3 : (optional) layer 3 weights% B3 : (optional) layer 3 biases% W4 : (optional) layer 4 weights% B4 : (optional) layer 4 biases%% OUTPUT% wh : vector of 'vectorized' neural network weights% nodes : MLP neural network layer descriptor vector%% Copyright (c) Rudolph van der Merwe (2002)%% This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for% academic use only (see included license file) and can be obtained by contacting% rvdmerwe@ece.ogi.edu. Businesses wishing to obtain a copy of the software should% contact ericwan@ece.ogi.edu for commercial licensing information.%% See LICENSE (which should be part of the main toolkit distribution) for more% detail.%=============================================================================================nIN = nargin;if (nIN < 4) error(' [ mlppack ] Not enough input arguments. Minimum number of layers is 2.'); endnLayers = nIN/2;nodes = zeros(1,nLayers+1);switch nLayers case 2 [nodes(2) nodes(1)] = size(W1); nodes(3) = size(W2,1); numParams = nodes(1)*nodes(2) + nodes(2) + nodes(2)*nodes(3) + nodes(3); wh=[W1(:) ; B1(:) ; W2(:) ; B2(:)]; case 3 [nodes(2) nodes(1)] = size(W1); nodes(3) = size(W2,1); nodes(4) = size(W3,1); numParams = nodes(1)*nodes(2) + nodes(2) + nodes(2)*nodes(3) + nodes(3) + nodes(3)*nodes(4) + nodes(4); wh=[W1(:) ; B1(:) ; W2(:) ; B2(:) ; W3(:) ; B3(:)]; case 4 [nodes(2) nodes(1)] = size(W1); nodes(3) = size(W2,1); nodes(4) = size(W3,1); nodes(5) = size(W4,1); numParams = nodes(1)*nodes(2) + nodes(2) + nodes(2)*nodes(3) + nodes(3) + nodes(3)*nodes(4) + nodes(4) + nodes(4)*nodes(5) + ... nodes(5); wh=[W1(:) ; B1(:) ; W2(:) ; B2(:) ; W3(:) ; B3(:); W4(:); B4(:)]; otherwise error(' [ mlppack ] MLP neural networks with more than 4 layers are not supported.');end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -