⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mlpindexgen.m

📁 递归贝叶斯估计的工具包
💻 M
字号:
function [idxW1, idxB1, idxW2, idxB2, idxW3, idxB3, idxW4, idxB4] = mlpindexgen(nodes)% MLPINDEXGEN  ReBEL MLP neural network parameter matrices de-vectorizing index generator%%  This function generates the needed index vectors to directly devoctorize a single ReBEL MLP%  neural network parameter vector into the corresponding weight and bias matrices. The output%  arguments are the index vectors for each layers weight and bias matrices. 'nodes' specify%  the MLP structure.%%  [idxW1, idxB1, idxW2, idxB2, idxW3, idxB3, idxW4, idxB4] = mlpindexgen(nodes)%%  INPUT%        nodes    :   MLP neural network layer descriptor vector%%  OUTPUT%        idxW1       :   layer 1 weights index vector%        idxB1       :   layer 1 biases index vector%        idxW2       :   layer 2 weights index vector%        idxB2       :   layer 2 biases index vector%        idxW3       :   (optional) layer 3 weights index vector%        idxB3       :   (optional) layer 3 biases index vector%        idxW4       :   (optional) layer 4 weights index vector%        idxB4       :   (optional) layer 4 biases index vector%%%  SEE ALSO:%            mlppack, mlpunpack%%   Copyright  (c) Rudolph van der Merwe (2002)%%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for%   academic use only (see included license file) and can be obtained by contacting%   rvdmerwe@ece.ogi.edu.  Businesses wishing to obtain a copy of the software should%   contact ericwan@ece.ogi.edu for commercial licensing information.%%   See LICENSE (which should be part of the main toolkit distribution) for more%   detail.%=============================================================================================nLayers = length(nodes)-1;if (nLayers<2)  error(' [ mlpindexgen ]  MLP neural networks need at least 2 layers.');elseif (nLayers>4)  error(' [ mlpindexgen ]  MLP neural networks with more than 4 layers are not supported.');end%--- If nLayers at leat == 2  numW1 = nodes(1)*nodes(2);        % number of parameters in W1 matrix  numB1 = nodes(2);                 % number of parameters in B1 matrix (actually a vector)  numW2 = nodes(2)*nodes(3);        % number of parameters in W2  numB2 = nodes(3);                 % number of parameters in B2  i=0;  j=i+numW1; idxW1 = i+1:j; i=j;  j=i+numB1; idxB1 = i+1:j; i=j;  j=i+numW2; idxW2 = i+1:j; i=j;  j=i+numB2; idxB2 = i+1:j; i=j;%--- If nLayers at least == 3if (nLayers > 2)   numW3 = nodes(3)*nodes(4);   numB3 = nodes(4);   j=i+numW3; idxW3 = i+1:j; i=j;   j=i+numB3; idxB3 = i+1:j; i=j;end%--- If nLayers == 4if (nLayers > 3)   numW4 = nodes(4)*nodes(5);   numB4 = nodes(5);   j=i+numW4; idxW4 = i+1:j; i=j;   j=i+numB4; idxB4 = i+1:j; i=j;end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -