⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pf.m

📁 递归贝叶斯估计的工具包
💻 M
字号:
function [estimate, ParticleFilterDS, pNoise, oNoise] = pf(ParticleFilterDS, pNoise, oNoise, obs, U1, U2, InferenceDS)% PF  Generic Particle Filter%%   This filter is also known as the 'Bootstrap Particle Filter' or the 'Condensation Algorithm'%%   [estimate, ParticleFilterDS, pNoise, oNoise] = PF(ParticleFilterDS, pNoise, oNoise, obs, U1, U2, InferenceDS)%%   This filter assumes the following standard state-space model:%%     x(k) = ffun[x(k-1),v(k-1),U1(k-1)]%     y(k) = hfun[x(k),n(k),U2(k)]%%   where x is the system state, v the process noise, n the observation noise, u1 the exogenous input to the state%   transition function, u2 the exogenous input to the state observation function and y the noisy observation of the%   system.%%   INPUT%         ParticleFilterDS     Particle filter data structure. Contains set of particles as well as their corresponding%                              weights.%         pNoise               process noise data structure%         oNoise               observation noise data structure%         obs                  noisy observations starting at time k ( y(k),y(k+1),...,y(k+N-1) )%         U1                   exogenous input to state transition function starting at time k-1 ( u1(k-1),u1(k),...,u1(k+N-2) )%         U2                   exogenous input to state observation function starting at time k  ( u2(k),u2(k+1),...,u2(k+N-1) )%         InferenceDS          Inference data structure generated by GENINFDS function.%%   OUTPUT%         estimate             State estimate generated from posterior distribution of state given all observation. Type of%                              estimate is specified by 'InferenceDS.estimateType'%         ParticleFilterDS     Updated Particle filter data structure. Contains set of particles as well as their corresponding weights.%         pNoise               process noise data structure     (possibly updated)%         oNoise               observation noise data structure (possibly updated)%%   ParticleFilterDS fields:%         .N                   (scalar) number of particles%         .particles           (statedim-by-N matrix) particle buffer%         .weights             (1-by-N r-vector) particle weights%%   Required InferenceDS fields:%         .estimateType        (string) Estimate type : 'mean', 'mode', etc.%         .resampleThreshold   (scalar) If the ratio of the 'effective particle set size' to the total number of particles%                                       drop below this threshold  i.e.  (N_efective/N) < resampleThreshold%                                       the particles will be resampled.  (N_efective is always less than or equal to N)%%   See also%   KF, EKF, UKF, CDKF, SRUKF, SRCDKF%   Copyright  (c) Rudolph van der Merwe (2002)%%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for%   academic use only (see included license file) and can be obtained by contacting%   rvdmerwe@ece.ogi.edu.  Businesses wishing to obtain a copy of the software should%   contact ericwan@ece.ogi.edu for commercial licensing information.%%   See LICENSE (which should be part of the main toolkit distribution) for more%   detail.%=============================================================================================if (nargin ~= 7) error(' [ pf ] Incorrect number of input arguments.'); end%--------------------------------------------------------------------------------------------------Xdim  = InferenceDS.statedim;                            % extract state dimensionOdim  = InferenceDS.obsdim;                              % extract observation dimensionU1dim = InferenceDS.U1dim;                               % extract exogenous input 1 dimensionU2dim = InferenceDS.U2dim;                               % extract exogenous input 2 dimensionVdim  = InferenceDS.Vdim;                                % extract process noise dimensionNdim  = InferenceDS.Ndim;                                % extract observation noise dimensionN          = ParticleFilterDS.N;                         % number of particlesparticles  = ParticleFilterDS.particles;                 % copy particle bufferweights    = ParticleFilterDS.weights;                   % particle weightsSt         = round(InferenceDS.resampleThreshold * N);   % resample thresholdonoise = zeros(InferenceDS.Ndim,N);normWeights = cvecrep(1/N,N);NOV = size(obs,2);                                           % number of input vectorsif (U1dim==0), UU1=zeros(0,N); endif (U2dim==0), UU2=zeros(0,N); endestimate   = zeros(Xdim,NOV);for j=1:NOV,%---------------------------------------------------------------------------    if U1dim UU1 = cvecrep(U1(:,j),N); end    if U2dim UU2 = cvecrep(U2(:,j),N); end    processNoise = feval(pNoise.sample, pNoise, N);    particlesPred = feval(InferenceDS.ffun, InferenceDS, particles, processNoise, UU1);    %-----------------------------------------------------------------------    % EVALUATE IMPORTANCE WEIGHTS    OBS = cvecrep(obs(:,j),N);    likelihood = feval(InferenceDS.likelihood, InferenceDS, OBS, particlesPred, UU2, oNoise) + 1e-99;    weights = weights .* likelihood;    weights = weights / sum(weights);if (0)prior = feval(InferenceDS.prior, InferenceDS, particlesPred, particles, UU1, pNoise) + 1e-99;figure(20);subplot(411)stem(prior);ylabel('prior');subplot(412);stem(likelihood);ylabel('likelihood');subplot(413);%stem(foobuf);ylabel('proposal');subplot(414);stem(weights);ylabel('weights');drawnowend    %-----------------------------------------------------------------------    % RESAMPLE    S = 1/sum(weights.^2);     % calculate effective particle set size    if (S < St)                  % resample if S is below threshold        outIndex  = residualresample(1:N,weights);        particles = particlesPred(:,outIndex);        weights   = normWeights;    else        particles  = particlesPred;    end    %-----------------------------------------------------------------------    % CALCULATE ESTIMATE    switch InferenceDS.estimateType    case 'mean'        estimate(:,j) = sum(rvecrep(weights,Xdim).*particles,2);          % expected mean    otherwise        error(' [ pf ] Unknown estimate type.');    end    if pNoise.adaptMethod switch InferenceDS.inftype    %---------------------- UPDATE PROCESS NOISE SOURCE IF NEEDED --------------------------------------------    case 'parameter'  %--- parameter estimation        switch pNoise.adaptMethod        case 'anneal'            pNoise.cov = max(pNoise.adaptParams(1) * pNoise.cov , pNoise.adaptParams(2));        otherwise            error(' [pf] Unkown process noise adaptation method!');        end    case 'joint'  %--- joint estimation        idx = pNoise.idxArr(end,:); % get indexs of parameter block of combo noise source        idxRange = idx(1):idx(2);        switch pNoise.adaptMethod        case 'anneal'            pNoise.cov(idxRange,idxRange) = diag(max(pNoise.adaptParams(1) * diag(pNoise.cov(idxRange,idxRange)), pNoise.adaptParams(2)));        otherwise            error(' [pf] Unkown process noise adaptation method!');        end        pNoise.noiseSources{pNoise.N}.cov = pNoise.cov(idxRange,idxRange);    %--------------------------------------------------------------------------------------------------    end; end%--------------------------------------------------------------------------end     %.. loop over input variablesParticleFilterDS.particles = particles;ParticleFilterDS.weights   = weights;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -