📄 pf.m
字号:
function [estimate, ParticleFilterDS, pNoise, oNoise] = pf(ParticleFilterDS, pNoise, oNoise, obs, U1, U2, InferenceDS)% PF Generic Particle Filter%% This filter is also known as the 'Bootstrap Particle Filter' or the 'Condensation Algorithm'%% [estimate, ParticleFilterDS, pNoise, oNoise] = PF(ParticleFilterDS, pNoise, oNoise, obs, U1, U2, InferenceDS)%% This filter assumes the following standard state-space model:%% x(k) = ffun[x(k-1),v(k-1),U1(k-1)]% y(k) = hfun[x(k),n(k),U2(k)]%% where x is the system state, v the process noise, n the observation noise, u1 the exogenous input to the state% transition function, u2 the exogenous input to the state observation function and y the noisy observation of the% system.%% INPUT% ParticleFilterDS Particle filter data structure. Contains set of particles as well as their corresponding% weights.% pNoise process noise data structure% oNoise observation noise data structure% obs noisy observations starting at time k ( y(k),y(k+1),...,y(k+N-1) )% U1 exogenous input to state transition function starting at time k-1 ( u1(k-1),u1(k),...,u1(k+N-2) )% U2 exogenous input to state observation function starting at time k ( u2(k),u2(k+1),...,u2(k+N-1) )% InferenceDS Inference data structure generated by GENINFDS function.%% OUTPUT% estimate State estimate generated from posterior distribution of state given all observation. Type of% estimate is specified by 'InferenceDS.estimateType'% ParticleFilterDS Updated Particle filter data structure. Contains set of particles as well as their corresponding weights.% pNoise process noise data structure (possibly updated)% oNoise observation noise data structure (possibly updated)%% ParticleFilterDS fields:% .N (scalar) number of particles% .particles (statedim-by-N matrix) particle buffer% .weights (1-by-N r-vector) particle weights%% Required InferenceDS fields:% .estimateType (string) Estimate type : 'mean', 'mode', etc.% .resampleThreshold (scalar) If the ratio of the 'effective particle set size' to the total number of particles% drop below this threshold i.e. (N_efective/N) < resampleThreshold% the particles will be resampled. (N_efective is always less than or equal to N)%% See also% KF, EKF, UKF, CDKF, SRUKF, SRCDKF% Copyright (c) Rudolph van der Merwe (2002)%% This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for% academic use only (see included license file) and can be obtained by contacting% rvdmerwe@ece.ogi.edu. Businesses wishing to obtain a copy of the software should% contact ericwan@ece.ogi.edu for commercial licensing information.%% See LICENSE (which should be part of the main toolkit distribution) for more% detail.%=============================================================================================if (nargin ~= 7) error(' [ pf ] Incorrect number of input arguments.'); end%--------------------------------------------------------------------------------------------------Xdim = InferenceDS.statedim; % extract state dimensionOdim = InferenceDS.obsdim; % extract observation dimensionU1dim = InferenceDS.U1dim; % extract exogenous input 1 dimensionU2dim = InferenceDS.U2dim; % extract exogenous input 2 dimensionVdim = InferenceDS.Vdim; % extract process noise dimensionNdim = InferenceDS.Ndim; % extract observation noise dimensionN = ParticleFilterDS.N; % number of particlesparticles = ParticleFilterDS.particles; % copy particle bufferweights = ParticleFilterDS.weights; % particle weightsSt = round(InferenceDS.resampleThreshold * N); % resample thresholdonoise = zeros(InferenceDS.Ndim,N);normWeights = cvecrep(1/N,N);NOV = size(obs,2); % number of input vectorsif (U1dim==0), UU1=zeros(0,N); endif (U2dim==0), UU2=zeros(0,N); endestimate = zeros(Xdim,NOV);for j=1:NOV,%--------------------------------------------------------------------------- if U1dim UU1 = cvecrep(U1(:,j),N); end if U2dim UU2 = cvecrep(U2(:,j),N); end processNoise = feval(pNoise.sample, pNoise, N); particlesPred = feval(InferenceDS.ffun, InferenceDS, particles, processNoise, UU1); %----------------------------------------------------------------------- % EVALUATE IMPORTANCE WEIGHTS OBS = cvecrep(obs(:,j),N); likelihood = feval(InferenceDS.likelihood, InferenceDS, OBS, particlesPred, UU2, oNoise) + 1e-99; weights = weights .* likelihood; weights = weights / sum(weights);if (0)prior = feval(InferenceDS.prior, InferenceDS, particlesPred, particles, UU1, pNoise) + 1e-99;figure(20);subplot(411)stem(prior);ylabel('prior');subplot(412);stem(likelihood);ylabel('likelihood');subplot(413);%stem(foobuf);ylabel('proposal');subplot(414);stem(weights);ylabel('weights');drawnowend %----------------------------------------------------------------------- % RESAMPLE S = 1/sum(weights.^2); % calculate effective particle set size if (S < St) % resample if S is below threshold outIndex = residualresample(1:N,weights); particles = particlesPred(:,outIndex); weights = normWeights; else particles = particlesPred; end %----------------------------------------------------------------------- % CALCULATE ESTIMATE switch InferenceDS.estimateType case 'mean' estimate(:,j) = sum(rvecrep(weights,Xdim).*particles,2); % expected mean otherwise error(' [ pf ] Unknown estimate type.'); end if pNoise.adaptMethod switch InferenceDS.inftype %---------------------- UPDATE PROCESS NOISE SOURCE IF NEEDED -------------------------------------------- case 'parameter' %--- parameter estimation switch pNoise.adaptMethod case 'anneal' pNoise.cov = max(pNoise.adaptParams(1) * pNoise.cov , pNoise.adaptParams(2)); otherwise error(' [pf] Unkown process noise adaptation method!'); end case 'joint' %--- joint estimation idx = pNoise.idxArr(end,:); % get indexs of parameter block of combo noise source idxRange = idx(1):idx(2); switch pNoise.adaptMethod case 'anneal' pNoise.cov(idxRange,idxRange) = diag(max(pNoise.adaptParams(1) * diag(pNoise.cov(idxRange,idxRange)), pNoise.adaptParams(2))); otherwise error(' [pf] Unkown process noise adaptation method!'); end pNoise.noiseSources{pNoise.N}.cov = pNoise.cov(idxRange,idxRange); %-------------------------------------------------------------------------------------------------- end; end%--------------------------------------------------------------------------end %.. loop over input variablesParticleFilterDS.particles = particles;ParticleFilterDS.weights = weights;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -