⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glmgrad.m

📁 递归贝叶斯估计的工具包
💻 M
字号:
function [g, gdata, gprior] = glmgrad(net, x, t)%GLMGRAD Evaluate gradient of error function for generalized linear model.%%	Description%	G = GLMGRAD(NET, X, T) takes a generalized linear model data%	structure NET  together with a matrix X of input vectors and a matrix%	T of target vectors, and evaluates the gradient G of the error%	function with respect to the network weights. The error function%	corresponds to the choice of output unit activation function. Each%	row of X corresponds to one input vector and each row of T%	corresponds to one target vector.%%	[G, GDATA, GPRIOR] = GLMGRAD(NET, X, T) also returns separately  the%	data and prior contributions to the gradient.%%	See also%	GLM, GLMPAK, GLMUNPAK, GLMFWD, GLMERR, GLMTRAIN%%	Copyright (c) Ian T Nabney (1996-2001)% Check arguments for consistencyerrstring = consist(net, 'glm', x, t);if ~isempty(errstring);  error(errstring);endy = glmfwd(net, x);delout = y - t;gw1 = x'*delout;gb1 = sum(delout, 1);gdata = [gw1(:)', gb1];[g, gdata, gprior] = gbayes(net, gdata);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -