⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ssfdc.c

📁 基于linux-2.6.28的mtd驱动
💻 C
字号:
/* * Linux driver for SSFDC Flash Translation Layer (Read only) * (c) 2005 Eptar srl * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com> * * Based on NTFL and MTDBLOCK_RO drivers * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */#include <linux/kernel.h>#include <linux/module.h>#include <linux/init.h>#include <linux/slab.h>#include <linux/hdreg.h>#include <linux/mtd/mtd.h>#include <linux/mtd/nand.h>#include <linux/mtd/blktrans.h>struct ssfdcr_record {	struct mtd_blktrans_dev mbd;	int usecount;	unsigned char heads;	unsigned char sectors;	unsigned short cylinders;	int cis_block;			/* block n. containing CIS/IDI */	int erase_size;			/* phys_block_size */	unsigned short *logic_block_map; /* all zones (max 8192 phys blocks on					    the 128MiB) */	int map_len;			/* n. phys_blocks on the card */};#define SSFDCR_MAJOR		257#define SSFDCR_PARTN_BITS	3#define SECTOR_SIZE		512#define SECTOR_SHIFT		9#define OOB_SIZE		16#define MAX_LOGIC_BLK_PER_ZONE	1000#define MAX_PHYS_BLK_PER_ZONE	1024#define KiB(x)	( (x) * 1024L )#define MiB(x)	( KiB(x) * 1024L )/** CHS Table		1MiB	2MiB	4MiB	8MiB	16MiB	32MiB	64MiB	128MiBNCylinder	125	125	250	250	500	500	500	500NHead		4	4	4	4	4	8	8	16NSector		4	8	8	16	16	16	32	32SumSector	2,000	4,000	8,000	16,000	32,000	64,000	128,000	256,000SectorSize	512	512	512	512	512	512	512	512**/typedef struct {	unsigned long size;	unsigned short cyl;	unsigned char head;	unsigned char sec;} chs_entry_t;/* Must be ordered by size */static const chs_entry_t chs_table[] = {	{ MiB(  1), 125,  4,  4 },	{ MiB(  2), 125,  4,  8 },	{ MiB(  4), 250,  4,  8 },	{ MiB(  8), 250,  4, 16 },	{ MiB( 16), 500,  4, 16 },	{ MiB( 32), 500,  8, 16 },	{ MiB( 64), 500,  8, 32 },	{ MiB(128), 500, 16, 32 },	{ 0 },};static int get_chs(unsigned long size, unsigned short *cyl, unsigned char *head,			unsigned char *sec){	int k;	int found = 0;	k = 0;	while (chs_table[k].size > 0 && size > chs_table[k].size)		k++;	if (chs_table[k].size > 0) {		if (cyl)			*cyl = chs_table[k].cyl;		if (head)			*head = chs_table[k].head;		if (sec)			*sec = chs_table[k].sec;		found = 1;	}	return found;}/* These bytes are the signature for the CIS/IDI sector */static const uint8_t cis_numbers[] = {	0x01, 0x03, 0xD9, 0x01, 0xFF, 0x18, 0x02, 0xDF, 0x01, 0x20};/* Read and check for a valid CIS sector */static int get_valid_cis_sector(struct mtd_info *mtd){	int ret, k, cis_sector;	size_t retlen;	loff_t offset;	uint8_t *sect_buf;	cis_sector = -1;	sect_buf = kmalloc(SECTOR_SIZE, GFP_KERNEL);	if (!sect_buf)		goto out;	/*	 * Look for CIS/IDI sector on the first GOOD block (give up after 4 bad	 * blocks). If the first good block doesn't contain CIS number the flash	 * is not SSFDC formatted	 */	for (k = 0, offset = 0; k < 4; k++, offset += mtd->erasesize) {		if (!mtd->block_isbad(mtd, offset)) {			ret = mtd->read(mtd, offset, SECTOR_SIZE, &retlen,				sect_buf);			/* CIS pattern match on the sector buffer */			if (ret < 0 || retlen != SECTOR_SIZE) {				printk(KERN_WARNING					"SSFDC_RO:can't read CIS/IDI sector\n");			} else if (!memcmp(sect_buf, cis_numbers,					sizeof(cis_numbers))) {				/* Found */				cis_sector = (int)(offset >> SECTOR_SHIFT);			} else {				DEBUG(MTD_DEBUG_LEVEL1,					"SSFDC_RO: CIS/IDI sector not found"					" on %s (mtd%d)\n", mtd->name,					mtd->index);			}			break;		}	}	kfree(sect_buf); out:	return cis_sector;}/* Read physical sector (wrapper to MTD_READ) */static int read_physical_sector(struct mtd_info *mtd, uint8_t *sect_buf,				int sect_no){	int ret;	size_t retlen;	loff_t offset = (loff_t)sect_no << SECTOR_SHIFT;	ret = mtd->read(mtd, offset, SECTOR_SIZE, &retlen, sect_buf);	if (ret < 0 || retlen != SECTOR_SIZE)		return -1;	return 0;}/* Read redundancy area (wrapper to MTD_READ_OOB */static int read_raw_oob(struct mtd_info *mtd, loff_t offs, uint8_t *buf){	struct mtd_oob_ops ops;	int ret;	ops.mode = MTD_OOB_RAW;	ops.ooboffs = 0;	ops.ooblen = OOB_SIZE;	ops.oobbuf = buf;	ops.datbuf = NULL;	ret = mtd->read_oob(mtd, offs, &ops);	if (ret < 0 || ops.oobretlen != OOB_SIZE)		return -1;	return 0;}/* Parity calculator on a word of n bit size */static int get_parity(int number, int size){ 	int k;	int parity;	parity = 1;	for (k = 0; k < size; k++) {		parity += (number >> k);		parity &= 1;	}	return parity;}/* Read and validate the logical block address field stored in the OOB */static int get_logical_address(uint8_t *oob_buf){	int block_address, parity;	int offset[2] = {6, 11}; /* offset of the 2 address fields within OOB */	int j;	int ok = 0;	/*	 * Look for the first valid logical address	 * Valid address has fixed pattern on most significant bits and	 * parity check	 */	for (j = 0; j < ARRAY_SIZE(offset); j++) {		block_address = ((int)oob_buf[offset[j]] << 8) |			oob_buf[offset[j]+1];		/* Check for the signature bits in the address field (MSBits) */		if ((block_address & ~0x7FF) == 0x1000) {			parity = block_address & 0x01;			block_address &= 0x7FF;			block_address >>= 1;			if (get_parity(block_address, 10) != parity) {				DEBUG(MTD_DEBUG_LEVEL0,					"SSFDC_RO: logical address field%d"					"parity error(0x%04X)\n", j+1,					block_address);			} else {				ok = 1;				break;			}		}	}	if (!ok)		block_address = -2;	DEBUG(MTD_DEBUG_LEVEL3, "SSFDC_RO: get_logical_address() %d\n",		block_address);	return block_address;}/* Build the logic block map */static int build_logical_block_map(struct ssfdcr_record *ssfdc){	unsigned long offset;	uint8_t oob_buf[OOB_SIZE];	int ret, block_address, phys_block;	struct mtd_info *mtd = ssfdc->mbd.mtd;	DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: build_block_map() nblks=%d (%luK)\n",	      ssfdc->map_len,	      (unsigned long)ssfdc->map_len * ssfdc->erase_size / 1024);	/* Scan every physical block, skip CIS block */	for (phys_block = ssfdc->cis_block + 1; phys_block < ssfdc->map_len;			phys_block++) {		offset = (unsigned long)phys_block * ssfdc->erase_size;		if (mtd->block_isbad(mtd, offset))			continue;	/* skip bad blocks */		ret = read_raw_oob(mtd, offset, oob_buf);		if (ret < 0) {			DEBUG(MTD_DEBUG_LEVEL0,				"SSFDC_RO: mtd read_oob() failed at %lu\n",				offset);			return -1;		}		block_address = get_logical_address(oob_buf);		/* Skip invalid addresses */		if (block_address >= 0 &&				block_address < MAX_LOGIC_BLK_PER_ZONE) {			int zone_index;			zone_index = phys_block / MAX_PHYS_BLK_PER_ZONE;			block_address += zone_index * MAX_LOGIC_BLK_PER_ZONE;			ssfdc->logic_block_map[block_address] =				(unsigned short)phys_block;			DEBUG(MTD_DEBUG_LEVEL2,				"SSFDC_RO: build_block_map() phys_block=%d,"				"logic_block_addr=%d, zone=%d\n",				phys_block, block_address, zone_index);		}	}	return 0;}static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd){	struct ssfdcr_record *ssfdc;	int cis_sector;	/* Check for small page NAND flash */	if (mtd->type != MTD_NANDFLASH || mtd->oobsize != OOB_SIZE)		return;	/* Check for SSDFC format by reading CIS/IDI sector */	cis_sector = get_valid_cis_sector(mtd);	if (cis_sector == -1)		return;	ssfdc = kzalloc(sizeof(struct ssfdcr_record), GFP_KERNEL);	if (!ssfdc) {		printk(KERN_WARNING			"SSFDC_RO: out of memory for data structures\n");		return;	}	ssfdc->mbd.mtd = mtd;	ssfdc->mbd.devnum = -1;	ssfdc->mbd.tr = tr;	ssfdc->mbd.readonly = 1;	ssfdc->cis_block = cis_sector / (mtd->erasesize >> SECTOR_SHIFT);	ssfdc->erase_size = mtd->erasesize;	ssfdc->map_len = mtd->size / mtd->erasesize;	DEBUG(MTD_DEBUG_LEVEL1,		"SSFDC_RO: cis_block=%d,erase_size=%d,map_len=%d,n_zones=%d\n",		ssfdc->cis_block, ssfdc->erase_size, ssfdc->map_len,		DIV_ROUND_UP(ssfdc->map_len, MAX_PHYS_BLK_PER_ZONE));	/* Set geometry */	ssfdc->heads = 16;	ssfdc->sectors = 32;	get_chs(mtd->size, NULL, &ssfdc->heads, &ssfdc->sectors);	ssfdc->cylinders = (unsigned short)((mtd->size >> SECTOR_SHIFT) /			((long)ssfdc->sectors * (long)ssfdc->heads));	DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: using C:%d H:%d S:%d == %ld sects\n",		ssfdc->cylinders, ssfdc->heads , ssfdc->sectors,		(long)ssfdc->cylinders * (long)ssfdc->heads *		(long)ssfdc->sectors);	ssfdc->mbd.size = (long)ssfdc->heads * (long)ssfdc->cylinders *				(long)ssfdc->sectors;	/* Allocate logical block map */	ssfdc->logic_block_map = kmalloc(sizeof(ssfdc->logic_block_map[0]) *					 ssfdc->map_len, GFP_KERNEL);	if (!ssfdc->logic_block_map) {		printk(KERN_WARNING			"SSFDC_RO: out of memory for data structures\n");		goto out_err;	}	memset(ssfdc->logic_block_map, 0xff, sizeof(ssfdc->logic_block_map[0]) *		ssfdc->map_len);	/* Build logical block map */	if (build_logical_block_map(ssfdc) < 0)		goto out_err;	/* Register device + partitions */	if (add_mtd_blktrans_dev(&ssfdc->mbd))		goto out_err;	printk(KERN_INFO "SSFDC_RO: Found ssfdc%c on mtd%d (%s)\n",		ssfdc->mbd.devnum + 'a', mtd->index, mtd->name);	return;out_err:	kfree(ssfdc->logic_block_map);        kfree(ssfdc);}static void ssfdcr_remove_dev(struct mtd_blktrans_dev *dev){	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;	DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: remove_dev (i=%d)\n", dev->devnum);	del_mtd_blktrans_dev(dev);	kfree(ssfdc->logic_block_map);	kfree(ssfdc);}static int ssfdcr_readsect(struct mtd_blktrans_dev *dev,				unsigned long logic_sect_no, char *buf){	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;	int sectors_per_block, offset, block_address;	sectors_per_block = ssfdc->erase_size >> SECTOR_SHIFT;	offset = (int)(logic_sect_no % sectors_per_block);	block_address = (int)(logic_sect_no / sectors_per_block);	DEBUG(MTD_DEBUG_LEVEL3,		"SSFDC_RO: ssfdcr_readsect(%lu) sec_per_blk=%d, ofst=%d,"		" block_addr=%d\n", logic_sect_no, sectors_per_block, offset,		block_address);	if (block_address >= ssfdc->map_len)		BUG();	block_address = ssfdc->logic_block_map[block_address];	DEBUG(MTD_DEBUG_LEVEL3,		"SSFDC_RO: ssfdcr_readsect() phys_block_addr=%d\n",		block_address);	if (block_address < 0xffff) {		unsigned long sect_no;		sect_no = (unsigned long)block_address * sectors_per_block +				offset;		DEBUG(MTD_DEBUG_LEVEL3,			"SSFDC_RO: ssfdcr_readsect() phys_sect_no=%lu\n",			sect_no);		if (read_physical_sector(ssfdc->mbd.mtd, buf, sect_no) < 0)			return -EIO;	} else {		memset(buf, 0xff, SECTOR_SIZE);	}	return 0;}static int ssfdcr_getgeo(struct mtd_blktrans_dev *dev,  struct hd_geometry *geo){	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;	DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: ssfdcr_getgeo() C=%d, H=%d, S=%d\n",			ssfdc->cylinders, ssfdc->heads, ssfdc->sectors);	geo->heads = ssfdc->heads;	geo->sectors = ssfdc->sectors;	geo->cylinders = ssfdc->cylinders;	return 0;}/**************************************************************************** * * Module stuff * ****************************************************************************/static struct mtd_blktrans_ops ssfdcr_tr = {	.name		= "ssfdc",	.major		= SSFDCR_MAJOR,	.part_bits	= SSFDCR_PARTN_BITS,	.blksize	= SECTOR_SIZE,	.getgeo		= ssfdcr_getgeo,	.readsect	= ssfdcr_readsect,	.add_mtd	= ssfdcr_add_mtd,	.remove_dev	= ssfdcr_remove_dev,	.owner		= THIS_MODULE,};static int __init init_ssfdcr(void){	printk(KERN_INFO "SSFDC read-only Flash Translation layer\n");	return register_mtd_blktrans(&ssfdcr_tr);}static void __exit cleanup_ssfdcr(void){	deregister_mtd_blktrans(&ssfdcr_tr);}module_init(init_ssfdcr);module_exit(cleanup_ssfdcr);MODULE_LICENSE("GPL");MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");MODULE_DESCRIPTION("Flash Translation Layer for read-only SSFDC SmartMedia card");

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -