⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 io.c

📁 基于linux-2.6.28的mtd驱动
💻 C
📖 第 1 页 / 共 3 页
字号:
/* * Copyright (c) International Business Machines Corp., 2006 * Copyright (c) Nokia Corporation, 2006, 2007 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See * the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Author: Artem Bityutskiy (Битюцкий Артём) *//* * UBI input/output sub-system. * * This sub-system provides a uniform way to work with all kinds of the * underlying MTD devices. It also implements handy functions for reading and * writing UBI headers. * * We are trying to have a paranoid mindset and not to trust to what we read * from the flash media in order to be more secure and robust. So this * sub-system validates every single header it reads from the flash media. * * Some words about how the eraseblock headers are stored. * * The erase counter header is always stored at offset zero. By default, the * VID header is stored after the EC header at the closest aligned offset * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID * header at the closest aligned offset. But this default layout may be * changed. For example, for different reasons (e.g., optimization) UBI may be * asked to put the VID header at further offset, and even at an unaligned * offset. Of course, if the offset of the VID header is unaligned, UBI adds * proper padding in front of it. Data offset may also be changed but it has to * be aligned. * * About minimal I/O units. In general, UBI assumes flash device model where * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the * @ubi->mtd->writesize field. But as an exception, UBI admits of using another * (smaller) minimal I/O unit size for EC and VID headers to make it possible * to do different optimizations. * * This is extremely useful in case of NAND flashes which admit of several * write operations to one NAND page. In this case UBI can fit EC and VID * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI * users. * * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID * headers. * * Q: why not just to treat sub-page as a minimal I/O unit of this flash * device, e.g., make @ubi->min_io_size = 512 in the example above? * * A: because when writing a sub-page, MTD still writes a full 2K page but the * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we * prefer to use sub-pages only for EV and VID headers. * * As it was noted above, the VID header may start at a non-aligned offset. * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, * the VID header may reside at offset 1984 which is the last 64 bytes of the * last sub-page (EC header is always at offset zero). This causes some * difficulties when reading and writing VID headers. * * Suppose we have a 64-byte buffer and we read a VID header at it. We change * the data and want to write this VID header out. As we can only write in * 512-byte chunks, we have to allocate one more buffer and copy our VID header * to offset 448 of this buffer. * * The I/O sub-system does the following trick in order to avoid this extra * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. * When the VID header is being written out, it shifts the VID header pointer * back and writes the whole sub-page. */#include <linux/crc32.h>#include <linux/err.h>#include "ubi.h"#ifdef CONFIG_MTD_UBI_DEBUG_PARANOIDstatic int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,				 const struct ubi_ec_hdr *ec_hdr);static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,				  const struct ubi_vid_hdr *vid_hdr);static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,				 int len);#else#define paranoid_check_not_bad(ubi, pnum) 0#define paranoid_check_peb_ec_hdr(ubi, pnum)  0#define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0#define paranoid_check_peb_vid_hdr(ubi, pnum) 0#define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0#define paranoid_check_all_ff(ubi, pnum, offset, len) 0#endif/** * ubi_io_read - read data from a physical eraseblock. * @ubi: UBI device description object * @buf: buffer where to store the read data * @pnum: physical eraseblock number to read from * @offset: offset within the physical eraseblock from where to read * @len: how many bytes to read * * This function reads data from offset @offset of physical eraseblock @pnum * and stores the read data in the @buf buffer. The following return codes are * possible: * * o %0 if all the requested data were successfully read; * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but *   correctable bit-flips were detected; this is harmless but may indicate *   that this eraseblock may become bad soon (but do not have to); * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for *   example it can be an ECC error in case of NAND; this most probably means *   that the data is corrupted; * o %-EIO if some I/O error occurred; * o other negative error codes in case of other errors. */int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,		int len){	int err, retries = 0;	size_t read;	loff_t addr;	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);	ubi_assert(len > 0);	err = paranoid_check_not_bad(ubi, pnum);	if (err)		return err > 0 ? -EINVAL : err;	addr = (loff_t)pnum * ubi->peb_size + offset;retry:	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);	if (err) {		if (err == -EUCLEAN) {			/*			 * -EUCLEAN is reported if there was a bit-flip which			 * was corrected, so this is harmless.			 *			 * We do not report about it here unless debugging is			 * enabled. A corresponding message will be printed			 * later, when it is has been scrubbed.			 */			dbg_msg("fixable bit-flip detected at PEB %d", pnum);			ubi_assert(len == read);			return UBI_IO_BITFLIPS;		}		if (read != len && retries++ < UBI_IO_RETRIES) {			dbg_io("error %d while reading %d bytes from PEB %d:%d,"			       " read only %zd bytes, retry",			       err, len, pnum, offset, read);			yield();			goto retry;		}		ubi_err("error %d while reading %d bytes from PEB %d:%d, "			"read %zd bytes", err, len, pnum, offset, read);		ubi_dbg_dump_stack();		/*		 * The driver should never return -EBADMSG if it failed to read		 * all the requested data. But some buggy drivers might do		 * this, so we change it to -EIO.		 */		if (read != len && err == -EBADMSG) {			ubi_assert(0);			err = -EIO;		}	} else {		ubi_assert(len == read);		if (ubi_dbg_is_bitflip()) {			dbg_gen("bit-flip (emulated)");			err = UBI_IO_BITFLIPS;		}	}	return err;}/** * ubi_io_write - write data to a physical eraseblock. * @ubi: UBI device description object * @buf: buffer with the data to write * @pnum: physical eraseblock number to write to * @offset: offset within the physical eraseblock where to write * @len: how many bytes to write * * This function writes @len bytes of data from buffer @buf to offset @offset * of physical eraseblock @pnum. If all the data were successfully written, * zero is returned. If an error occurred, this function returns a negative * error code. If %-EIO is returned, the physical eraseblock most probably went * bad. * * Note, in case of an error, it is possible that something was still written * to the flash media, but may be some garbage. */int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,		 int len){	int err;	size_t written;	loff_t addr;	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);	ubi_assert(offset % ubi->hdrs_min_io_size == 0);	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);	if (ubi->ro_mode) {		ubi_err("read-only mode");		return -EROFS;	}	/* The below has to be compiled out if paranoid checks are disabled */	err = paranoid_check_not_bad(ubi, pnum);	if (err)		return err > 0 ? -EINVAL : err;	/* The area we are writing to has to contain all 0xFF bytes */	err = paranoid_check_all_ff(ubi, pnum, offset, len);	if (err)		return err > 0 ? -EINVAL : err;	if (offset >= ubi->leb_start) {		/*		 * We write to the data area of the physical eraseblock. Make		 * sure it has valid EC and VID headers.		 */		err = paranoid_check_peb_ec_hdr(ubi, pnum);		if (err)			return err > 0 ? -EINVAL : err;		err = paranoid_check_peb_vid_hdr(ubi, pnum);		if (err)			return err > 0 ? -EINVAL : err;	}	if (ubi_dbg_is_write_failure()) {		dbg_err("cannot write %d bytes to PEB %d:%d "			"(emulated)", len, pnum, offset);		ubi_dbg_dump_stack();		return -EIO;	}	addr = (loff_t)pnum * ubi->peb_size + offset;	err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);	if (err) {		ubi_err("error %d while writing %d bytes to PEB %d:%d, written"			" %zd bytes", err, len, pnum, offset, written);		ubi_dbg_dump_stack();	} else		ubi_assert(written == len);	return err;}/** * erase_callback - MTD erasure call-back. * @ei: MTD erase information object. * * Note, even though MTD erase interface is asynchronous, all the current * implementations are synchronous anyway. */static void erase_callback(struct erase_info *ei){	wake_up_interruptible((wait_queue_head_t *)ei->priv);}/** * do_sync_erase - synchronously erase a physical eraseblock. * @ubi: UBI device description object * @pnum: the physical eraseblock number to erase * * This function synchronously erases physical eraseblock @pnum and returns * zero in case of success and a negative error code in case of failure. If * %-EIO is returned, the physical eraseblock most probably went bad. */static int do_sync_erase(struct ubi_device *ubi, int pnum){	int err, retries = 0;	struct erase_info ei;	wait_queue_head_t wq;	dbg_io("erase PEB %d", pnum);retry:	init_waitqueue_head(&wq);	memset(&ei, 0, sizeof(struct erase_info));	ei.mtd      = ubi->mtd;	ei.addr     = (loff_t)pnum * ubi->peb_size;	ei.len      = ubi->peb_size;	ei.callback = erase_callback;	ei.priv     = (unsigned long)&wq;	err = ubi->mtd->erase(ubi->mtd, &ei);	if (err) {		if (retries++ < UBI_IO_RETRIES) {			dbg_io("error %d while erasing PEB %d, retry",			       err, pnum);			yield();			goto retry;		}		ubi_err("cannot erase PEB %d, error %d", pnum, err);		ubi_dbg_dump_stack();		return err;	}	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||					   ei.state == MTD_ERASE_FAILED);	if (err) {		ubi_err("interrupted PEB %d erasure", pnum);		return -EINTR;	}	if (ei.state == MTD_ERASE_FAILED) {		if (retries++ < UBI_IO_RETRIES) {			dbg_io("error while erasing PEB %d, retry", pnum);			yield();			goto retry;		}		ubi_err("cannot erase PEB %d", pnum);		ubi_dbg_dump_stack();		return -EIO;	}	err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size);	if (err)		return err > 0 ? -EINVAL : err;	if (ubi_dbg_is_erase_failure() && !err) {		dbg_err("cannot erase PEB %d (emulated)", pnum);		return -EIO;	}	return 0;}/** * check_pattern - check if buffer contains only a certain byte pattern. * @buf: buffer to check * @patt: the pattern to check * @size: buffer size in bytes * * This function returns %1 in there are only @patt bytes in @buf, and %0 if * something else was also found. */static int check_pattern(const void *buf, uint8_t patt, int size){	int i;	for (i = 0; i < size; i++)		if (((const uint8_t *)buf)[i] != patt)			return 0;	return 1;}/* Patterns to write to a physical eraseblock when torturing it */static uint8_t patterns[] = {0xa5, 0x5a, 0x0};/** * torture_peb - test a supposedly bad physical eraseblock. * @ubi: UBI device description object * @pnum: the physical eraseblock number to test * * This function returns %-EIO if the physical eraseblock did not pass the * test, a positive number of erase operations done if the test was * successfully passed, and other negative error codes in case of other errors. */static int torture_peb(struct ubi_device *ubi, int pnum){	int err, i, patt_count;	ubi_msg("run torture test for PEB %d", pnum);	patt_count = ARRAY_SIZE(patterns);	ubi_assert(patt_count > 0);	mutex_lock(&ubi->buf_mutex);	for (i = 0; i < patt_count; i++) {		err = do_sync_erase(ubi, pnum);		if (err)			goto out;		/* Make sure the PEB contains only 0xFF bytes */		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);		if (err)			goto out;		err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);		if (err == 0) {			ubi_err("erased PEB %d, but a non-0xFF byte found",				pnum);			err = -EIO;			goto out;		}		/* Write a pattern and check it */		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);		if (err)			goto out;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -