⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nand_ecc.c

📁 基于linux-2.6.28的mtd驱动
💻 C
字号:
/* * This file contains an ECC algorithm that detects and corrects 1 bit * errors in a 256 byte block of data. * * drivers/mtd/nand/nand_ecc.c * * Copyright © 2008 Koninklijke Philips Electronics NV. *                  Author: Frans Meulenbroeks * * Completely replaces the previous ECC implementation which was written by: *   Steven J. Hill (sjhill@realitydiluted.com) *   Thomas Gleixner (tglx@linutronix.de) * * Information on how this algorithm works and how it was developed * can be found in Documentation/mtd/nand_ecc.txt * * This file is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 or (at your option) any * later version. * * This file is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this file; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * *//* * The STANDALONE macro is useful when running the code outside the kernel * e.g. when running the code in a testbed or a benchmark program. * When STANDALONE is used, the module related macros are commented out * as well as the linux include files. * Instead a private definition of mtd_info is given to satisfy the compiler * (the code does not use mtd_info, so the code does not care) */#ifndef STANDALONE#include <linux/types.h>#include <linux/kernel.h>#include <linux/module.h>#include <linux/mtd/mtd.h>#include <linux/mtd/nand.h>#include <linux/mtd/nand_ecc.h>#include <asm/byteorder.h>#else#include <stdint.h>struct mtd_info;#define EXPORT_SYMBOL(x)  /* x */#define MODULE_LICENSE(x)	/* x */#define MODULE_AUTHOR(x)	/* x */#define MODULE_DESCRIPTION(x)	/* x */#define printk printf#define KERN_ERR		""#endif/* * invparity is a 256 byte table that contains the odd parity * for each byte. So if the number of bits in a byte is even, * the array element is 1, and when the number of bits is odd * the array eleemnt is 0. */static const char invparity[256] = {	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1};/* * bitsperbyte contains the number of bits per byte * this is only used for testing and repairing parity * (a precalculated value slightly improves performance) */static const char bitsperbyte[256] = {	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,	4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,};/* * addressbits is a lookup table to filter out the bits from the xor-ed * ecc data that identify the faulty location. * this is only used for repairing parity * see the comments in nand_correct_data for more details */static const char addressbits[256] = {	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f};/** * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte *			 block * @mtd:	MTD block structure * @buf:	input buffer with raw data * @code:	output buffer with ECC */int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,		       unsigned char *code){	int i;	const uint32_t *bp = (uint32_t *)buf;	/* 256 or 512 bytes/ecc  */	const uint32_t eccsize_mult =			(((struct nand_chip *)mtd->priv)->ecc.size) >> 8;	uint32_t cur;		/* current value in buffer */	/* rp0..rp15..rp17 are the various accumulated parities (per byte) */	uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;	uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16;	uint32_t uninitialized_var(rp17);	/* to make compiler happy */	uint32_t par;		/* the cumulative parity for all data */	uint32_t tmppar;	/* the cumulative parity for this iteration;				   for rp12, rp14 and rp16 at the end of the				   loop */	par = 0;	rp4 = 0;	rp6 = 0;	rp8 = 0;	rp10 = 0;	rp12 = 0;	rp14 = 0;	rp16 = 0;	/*	 * The loop is unrolled a number of times;	 * This avoids if statements to decide on which rp value to update	 * Also we process the data by longwords.	 * Note: passing unaligned data might give a performance penalty.	 * It is assumed that the buffers are aligned.	 * tmppar is the cumulative sum of this iteration.	 * needed for calculating rp12, rp14, rp16 and par	 * also used as a performance improvement for rp6, rp8 and rp10	 */	for (i = 0; i < eccsize_mult << 2; i++) {		cur = *bp++;		tmppar = cur;		rp4 ^= cur;		cur = *bp++;		tmppar ^= cur;		rp6 ^= tmppar;		cur = *bp++;		tmppar ^= cur;		rp4 ^= cur;		cur = *bp++;		tmppar ^= cur;		rp8 ^= tmppar;		cur = *bp++;		tmppar ^= cur;		rp4 ^= cur;		rp6 ^= cur;		cur = *bp++;		tmppar ^= cur;		rp6 ^= cur;		cur = *bp++;		tmppar ^= cur;		rp4 ^= cur;		cur = *bp++;		tmppar ^= cur;		rp10 ^= tmppar;		cur = *bp++;		tmppar ^= cur;		rp4 ^= cur;		rp6 ^= cur;		rp8 ^= cur;		cur = *bp++;		tmppar ^= cur;		rp6 ^= cur;		rp8 ^= cur;		cur = *bp++;		tmppar ^= cur;		rp4 ^= cur;		rp8 ^= cur;		cur = *bp++;		tmppar ^= cur;		rp8 ^= cur;		cur = *bp++;		tmppar ^= cur;		rp4 ^= cur;		rp6 ^= cur;		cur = *bp++;		tmppar ^= cur;		rp6 ^= cur;		cur = *bp++;		tmppar ^= cur;		rp4 ^= cur;		cur = *bp++;		tmppar ^= cur;		par ^= tmppar;		if ((i & 0x1) == 0)			rp12 ^= tmppar;		if ((i & 0x2) == 0)			rp14 ^= tmppar;		if (eccsize_mult == 2 && (i & 0x4) == 0)			rp16 ^= tmppar;	}	/*	 * handle the fact that we use longword operations	 * we'll bring rp4..rp14..rp16 back to single byte entities by	 * shifting and xoring first fold the upper and lower 16 bits,	 * then the upper and lower 8 bits.	 */	rp4 ^= (rp4 >> 16);	rp4 ^= (rp4 >> 8);	rp4 &= 0xff;	rp6 ^= (rp6 >> 16);	rp6 ^= (rp6 >> 8);	rp6 &= 0xff;	rp8 ^= (rp8 >> 16);	rp8 ^= (rp8 >> 8);	rp8 &= 0xff;	rp10 ^= (rp10 >> 16);	rp10 ^= (rp10 >> 8);	rp10 &= 0xff;	rp12 ^= (rp12 >> 16);	rp12 ^= (rp12 >> 8);	rp12 &= 0xff;	rp14 ^= (rp14 >> 16);	rp14 ^= (rp14 >> 8);	rp14 &= 0xff;	if (eccsize_mult == 2) {		rp16 ^= (rp16 >> 16);		rp16 ^= (rp16 >> 8);		rp16 &= 0xff;	}	/*	 * we also need to calculate the row parity for rp0..rp3	 * This is present in par, because par is now	 * rp3 rp3 rp2 rp2 in little endian and	 * rp2 rp2 rp3 rp3 in big endian	 * as well as	 * rp1 rp0 rp1 rp0 in little endian and	 * rp0 rp1 rp0 rp1 in big endian	 * First calculate rp2 and rp3	 */#ifdef __BIG_ENDIAN	rp2 = (par >> 16);	rp2 ^= (rp2 >> 8);	rp2 &= 0xff;	rp3 = par & 0xffff;	rp3 ^= (rp3 >> 8);	rp3 &= 0xff;#else	rp3 = (par >> 16);	rp3 ^= (rp3 >> 8);	rp3 &= 0xff;	rp2 = par & 0xffff;	rp2 ^= (rp2 >> 8);	rp2 &= 0xff;#endif	/* reduce par to 16 bits then calculate rp1 and rp0 */	par ^= (par >> 16);#ifdef __BIG_ENDIAN	rp0 = (par >> 8) & 0xff;	rp1 = (par & 0xff);#else	rp1 = (par >> 8) & 0xff;	rp0 = (par & 0xff);#endif	/* finally reduce par to 8 bits */	par ^= (par >> 8);	par &= 0xff;	/*	 * and calculate rp5..rp15..rp17	 * note that par = rp4 ^ rp5 and due to the commutative property	 * of the ^ operator we can say:	 * rp5 = (par ^ rp4);	 * The & 0xff seems superfluous, but benchmarking learned that	 * leaving it out gives slightly worse results. No idea why, probably	 * it has to do with the way the pipeline in pentium is organized.	 */	rp5 = (par ^ rp4) & 0xff;	rp7 = (par ^ rp6) & 0xff;	rp9 = (par ^ rp8) & 0xff;	rp11 = (par ^ rp10) & 0xff;	rp13 = (par ^ rp12) & 0xff;	rp15 = (par ^ rp14) & 0xff;	if (eccsize_mult == 2)		rp17 = (par ^ rp16) & 0xff;	/*	 * Finally calculate the ecc bits.	 * Again here it might seem that there are performance optimisations	 * possible, but benchmarks showed that on the system this is developed	 * the code below is the fastest	 */#ifdef CONFIG_MTD_NAND_ECC_SMC	code[0] =	    (invparity[rp7] << 7) |	    (invparity[rp6] << 6) |	    (invparity[rp5] << 5) |	    (invparity[rp4] << 4) |	    (invparity[rp3] << 3) |	    (invparity[rp2] << 2) |	    (invparity[rp1] << 1) |	    (invparity[rp0]);	code[1] =	    (invparity[rp15] << 7) |	    (invparity[rp14] << 6) |	    (invparity[rp13] << 5) |	    (invparity[rp12] << 4) |	    (invparity[rp11] << 3) |	    (invparity[rp10] << 2) |	    (invparity[rp9] << 1)  |	    (invparity[rp8]);#else	code[1] =	    (invparity[rp7] << 7) |	    (invparity[rp6] << 6) |	    (invparity[rp5] << 5) |	    (invparity[rp4] << 4) |	    (invparity[rp3] << 3) |	    (invparity[rp2] << 2) |	    (invparity[rp1] << 1) |	    (invparity[rp0]);	code[0] =	    (invparity[rp15] << 7) |	    (invparity[rp14] << 6) |	    (invparity[rp13] << 5) |	    (invparity[rp12] << 4) |	    (invparity[rp11] << 3) |	    (invparity[rp10] << 2) |	    (invparity[rp9] << 1)  |	    (invparity[rp8]);#endif	if (eccsize_mult == 1)		code[2] =		    (invparity[par & 0xf0] << 7) |		    (invparity[par & 0x0f] << 6) |		    (invparity[par & 0xcc] << 5) |		    (invparity[par & 0x33] << 4) |		    (invparity[par & 0xaa] << 3) |		    (invparity[par & 0x55] << 2) |		    3;	else		code[2] =		    (invparity[par & 0xf0] << 7) |		    (invparity[par & 0x0f] << 6) |		    (invparity[par & 0xcc] << 5) |		    (invparity[par & 0x33] << 4) |		    (invparity[par & 0xaa] << 3) |		    (invparity[par & 0x55] << 2) |		    (invparity[rp17] << 1) |		    (invparity[rp16] << 0);	return 0;}EXPORT_SYMBOL(nand_calculate_ecc);/** * nand_correct_data - [NAND Interface] Detect and correct bit error(s) * @mtd:	MTD block structure * @buf:	raw data read from the chip * @read_ecc:	ECC from the chip * @calc_ecc:	the ECC calculated from raw data * * Detect and correct a 1 bit error for 256/512 byte block */int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,		      unsigned char *read_ecc, unsigned char *calc_ecc){	unsigned char b0, b1, b2;	unsigned char byte_addr, bit_addr;	/* 256 or 512 bytes/ecc  */	const uint32_t eccsize_mult =			(((struct nand_chip *)mtd->priv)->ecc.size) >> 8;	/*	 * b0 to b2 indicate which bit is faulty (if any)	 * we might need the xor result  more than once,	 * so keep them in a local var	*/#ifdef CONFIG_MTD_NAND_ECC_SMC	b0 = read_ecc[0] ^ calc_ecc[0];	b1 = read_ecc[1] ^ calc_ecc[1];#else	b0 = read_ecc[1] ^ calc_ecc[1];	b1 = read_ecc[0] ^ calc_ecc[0];#endif	b2 = read_ecc[2] ^ calc_ecc[2];	/* check if there are any bitfaults */	/* repeated if statements are slightly more efficient than switch ... */	/* ordered in order of likelihood */	if ((b0 | b1 | b2) == 0)		return 0;	/* no error */	if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&	    (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&	    ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||	     (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {	/* single bit error */		/*		 * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty		 * byte, cp 5/3/1 indicate the faulty bit.		 * A lookup table (called addressbits) is used to filter		 * the bits from the byte they are in.		 * A marginal optimisation is possible by having three		 * different lookup tables.		 * One as we have now (for b0), one for b2		 * (that would avoid the >> 1), and one for b1 (with all values		 * << 4). However it was felt that introducing two more tables		 * hardly justify the gain.		 *		 * The b2 shift is there to get rid of the lowest two bits.		 * We could also do addressbits[b2] >> 1 but for the		 * performace it does not make any difference		 */		if (eccsize_mult == 1)			byte_addr = (addressbits[b1] << 4) + addressbits[b0];		else			byte_addr = (addressbits[b2 & 0x3] << 8) +				    (addressbits[b1] << 4) + addressbits[b0];		bit_addr = addressbits[b2 >> 2];		/* flip the bit */		buf[byte_addr] ^= (1 << bit_addr);		return 1;	}	/* count nr of bits; use table lookup, faster than calculating it */	if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)		return 1;	/* error in ecc data; no action needed */	printk(KERN_ERR "uncorrectable error : ");	return -1;}EXPORT_SYMBOL(nand_correct_data);MODULE_LICENSE("GPL");MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");MODULE_DESCRIPTION("Generic NAND ECC support");

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -