⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 au1550nd.c

📁 基于linux-2.6.28的mtd驱动
💻 C
字号:
/* *  drivers/mtd/nand/au1550nd.c * *  Copyright (C) 2004 Embedded Edge, LLC * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */#include <linux/slab.h>#include <linux/init.h>#include <linux/module.h>#include <linux/interrupt.h>#include <linux/mtd/mtd.h>#include <linux/mtd/nand.h>#include <linux/mtd/partitions.h>#include <asm/io.h>#include <asm/mach-au1x00/au1xxx.h>/* * MTD structure for NAND controller */static struct mtd_info *au1550_mtd = NULL;static void __iomem *p_nand;static int nand_width = 1;	/* default x8 */static void (*au1550_write_byte)(struct mtd_info *, u_char);/* * Define partitions for flash device */static const struct mtd_partition partition_info[] = {	{	 .name = "NAND FS 0",	 .offset = 0,	 .size = 8 * 1024 * 1024},	{	 .name = "NAND FS 1",	 .offset = MTDPART_OFS_APPEND,	 .size = MTDPART_SIZ_FULL}};/** * au_read_byte -  read one byte from the chip * @mtd:	MTD device structure * *  read function for 8bit buswith */static u_char au_read_byte(struct mtd_info *mtd){	struct nand_chip *this = mtd->priv;	u_char ret = readb(this->IO_ADDR_R);	au_sync();	return ret;}/** * au_write_byte -  write one byte to the chip * @mtd:	MTD device structure * @byte:	pointer to data byte to write * *  write function for 8it buswith */static void au_write_byte(struct mtd_info *mtd, u_char byte){	struct nand_chip *this = mtd->priv;	writeb(byte, this->IO_ADDR_W);	au_sync();}/** * au_read_byte16 -  read one byte endianess aware from the chip * @mtd:	MTD device structure * *  read function for 16bit buswith with * endianess conversion */static u_char au_read_byte16(struct mtd_info *mtd){	struct nand_chip *this = mtd->priv;	u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));	au_sync();	return ret;}/** * au_write_byte16 -  write one byte endianess aware to the chip * @mtd:	MTD device structure * @byte:	pointer to data byte to write * *  write function for 16bit buswith with * endianess conversion */static void au_write_byte16(struct mtd_info *mtd, u_char byte){	struct nand_chip *this = mtd->priv;	writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);	au_sync();}/** * au_read_word -  read one word from the chip * @mtd:	MTD device structure * *  read function for 16bit buswith without * endianess conversion */static u16 au_read_word(struct mtd_info *mtd){	struct nand_chip *this = mtd->priv;	u16 ret = readw(this->IO_ADDR_R);	au_sync();	return ret;}/** * au_write_buf -  write buffer to chip * @mtd:	MTD device structure * @buf:	data buffer * @len:	number of bytes to write * *  write function for 8bit buswith */static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len){	int i;	struct nand_chip *this = mtd->priv;	for (i = 0; i < len; i++) {		writeb(buf[i], this->IO_ADDR_W);		au_sync();	}}/** * au_read_buf -  read chip data into buffer * @mtd:	MTD device structure * @buf:	buffer to store date * @len:	number of bytes to read * *  read function for 8bit buswith */static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len){	int i;	struct nand_chip *this = mtd->priv;	for (i = 0; i < len; i++) {		buf[i] = readb(this->IO_ADDR_R);		au_sync();	}}/** * au_verify_buf -  Verify chip data against buffer * @mtd:	MTD device structure * @buf:	buffer containing the data to compare * @len:	number of bytes to compare * *  verify function for 8bit buswith */static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len){	int i;	struct nand_chip *this = mtd->priv;	for (i = 0; i < len; i++) {		if (buf[i] != readb(this->IO_ADDR_R))			return -EFAULT;		au_sync();	}	return 0;}/** * au_write_buf16 -  write buffer to chip * @mtd:	MTD device structure * @buf:	data buffer * @len:	number of bytes to write * *  write function for 16bit buswith */static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len){	int i;	struct nand_chip *this = mtd->priv;	u16 *p = (u16 *) buf;	len >>= 1;	for (i = 0; i < len; i++) {		writew(p[i], this->IO_ADDR_W);		au_sync();	}}/** * au_read_buf16 -  read chip data into buffer * @mtd:	MTD device structure * @buf:	buffer to store date * @len:	number of bytes to read * *  read function for 16bit buswith */static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len){	int i;	struct nand_chip *this = mtd->priv;	u16 *p = (u16 *) buf;	len >>= 1;	for (i = 0; i < len; i++) {		p[i] = readw(this->IO_ADDR_R);		au_sync();	}}/** * au_verify_buf16 -  Verify chip data against buffer * @mtd:	MTD device structure * @buf:	buffer containing the data to compare * @len:	number of bytes to compare * *  verify function for 16bit buswith */static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len){	int i;	struct nand_chip *this = mtd->priv;	u16 *p = (u16 *) buf;	len >>= 1;	for (i = 0; i < len; i++) {		if (p[i] != readw(this->IO_ADDR_R))			return -EFAULT;		au_sync();	}	return 0;}/* Select the chip by setting nCE to low */#define NAND_CTL_SETNCE		1/* Deselect the chip by setting nCE to high */#define NAND_CTL_CLRNCE		2/* Select the command latch by setting CLE to high */#define NAND_CTL_SETCLE		3/* Deselect the command latch by setting CLE to low */#define NAND_CTL_CLRCLE		4/* Select the address latch by setting ALE to high */#define NAND_CTL_SETALE		5/* Deselect the address latch by setting ALE to low */#define NAND_CTL_CLRALE		6static void au1550_hwcontrol(struct mtd_info *mtd, int cmd){	register struct nand_chip *this = mtd->priv;	switch (cmd) {	case NAND_CTL_SETCLE:		this->IO_ADDR_W = p_nand + MEM_STNAND_CMD;		break;	case NAND_CTL_CLRCLE:		this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;		break;	case NAND_CTL_SETALE:		this->IO_ADDR_W = p_nand + MEM_STNAND_ADDR;		break;	case NAND_CTL_CLRALE:		this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;		/* FIXME: Nobody knows why this is necessary,		 * but it works only that way */		udelay(1);		break;	case NAND_CTL_SETNCE:		/* assert (force assert) chip enable */		au_writel((1 << (4 + NAND_CS)), MEM_STNDCTL);		break;	case NAND_CTL_CLRNCE:		/* deassert chip enable */		au_writel(0, MEM_STNDCTL);		break;	}	this->IO_ADDR_R = this->IO_ADDR_W;	/* Drain the writebuffer */	au_sync();}int au1550_device_ready(struct mtd_info *mtd){	int ret = (au_readl(MEM_STSTAT) & 0x1) ? 1 : 0;	au_sync();	return ret;}/** * au1550_select_chip - control -CE line *	Forbid driving -CE manually permitting the NAND controller to do this. *	Keeping -CE asserted during the whole sector reads interferes with the *	NOR flash and PCMCIA drivers as it causes contention on the static bus. *	We only have to hold -CE low for the NAND read commands since the flash *	chip needs it to be asserted during chip not ready time but the NAND *	controller keeps it released. * * @mtd:	MTD device structure * @chip:	chipnumber to select, -1 for deselect */static void au1550_select_chip(struct mtd_info *mtd, int chip){}/** * au1550_command - Send command to NAND device * @mtd:	MTD device structure * @command:	the command to be sent * @column:	the column address for this command, -1 if none * @page_addr:	the page address for this command, -1 if none */static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr){	register struct nand_chip *this = mtd->priv;	int ce_override = 0, i;	ulong flags;	/* Begin command latch cycle */	au1550_hwcontrol(mtd, NAND_CTL_SETCLE);	/*	 * Write out the command to the device.	 */	if (command == NAND_CMD_SEQIN) {		int readcmd;		if (column >= mtd->writesize) {			/* OOB area */			column -= mtd->writesize;			readcmd = NAND_CMD_READOOB;		} else if (column < 256) {			/* First 256 bytes --> READ0 */			readcmd = NAND_CMD_READ0;		} else {			column -= 256;			readcmd = NAND_CMD_READ1;		}		au1550_write_byte(mtd, readcmd);	}	au1550_write_byte(mtd, command);	/* Set ALE and clear CLE to start address cycle */	au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);	if (column != -1 || page_addr != -1) {		au1550_hwcontrol(mtd, NAND_CTL_SETALE);		/* Serially input address */		if (column != -1) {			/* Adjust columns for 16 bit buswidth */			if (this->options & NAND_BUSWIDTH_16)				column >>= 1;			au1550_write_byte(mtd, column);		}		if (page_addr != -1) {			au1550_write_byte(mtd, (u8)(page_addr & 0xff));			if (command == NAND_CMD_READ0 ||			    command == NAND_CMD_READ1 ||			    command == NAND_CMD_READOOB) {				/*				 * NAND controller will release -CE after				 * the last address byte is written, so we'll				 * have to forcibly assert it. No interrupts				 * are allowed while we do this as we don't				 * want the NOR flash or PCMCIA drivers to				 * steal our precious bytes of data...				 */				ce_override = 1;				local_irq_save(flags);				au1550_hwcontrol(mtd, NAND_CTL_SETNCE);			}			au1550_write_byte(mtd, (u8)(page_addr >> 8));			/* One more address cycle for devices > 32MiB */			if (this->chipsize > (32 << 20))				au1550_write_byte(mtd, (u8)((page_addr >> 16) & 0x0f));		}		/* Latch in address */		au1550_hwcontrol(mtd, NAND_CTL_CLRALE);	}	/*	 * Program and erase have their own busy handlers.	 * Status and sequential in need no delay.	 */	switch (command) {	case NAND_CMD_PAGEPROG:	case NAND_CMD_ERASE1:	case NAND_CMD_ERASE2:	case NAND_CMD_SEQIN:	case NAND_CMD_STATUS:		return;	case NAND_CMD_RESET:		break;	case NAND_CMD_READ0:	case NAND_CMD_READ1:	case NAND_CMD_READOOB:		/* Check if we're really driving -CE low (just in case) */		if (unlikely(!ce_override))			break;		/* Apply a short delay always to ensure that we do wait tWB. */		ndelay(100);		/* Wait for a chip to become ready... */		for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)			udelay(1);		/* Release -CE and re-enable interrupts. */		au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);		local_irq_restore(flags);		return;	}	/* Apply this short delay always to ensure that we do wait tWB. */	ndelay(100);	while(!this->dev_ready(mtd));}/* * Main initialization routine */static int __init au1xxx_nand_init(void){	struct nand_chip *this;	u16 boot_swapboot = 0;	/* default value */	int retval;	u32 mem_staddr;	u32 nand_phys;	/* Allocate memory for MTD device structure and private data */	au1550_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);	if (!au1550_mtd) {		printk("Unable to allocate NAND MTD dev structure.\n");		return -ENOMEM;	}	/* Get pointer to private data */	this = (struct nand_chip *)(&au1550_mtd[1]);	/* Initialize structures */	memset(au1550_mtd, 0, sizeof(struct mtd_info));	memset(this, 0, sizeof(struct nand_chip));	/* Link the private data with the MTD structure */	au1550_mtd->priv = this;	au1550_mtd->owner = THIS_MODULE;	/* MEM_STNDCTL: disable ints, disable nand boot */	au_writel(0, MEM_STNDCTL);#ifdef CONFIG_MIPS_PB1550	/* set gpio206 high */	au_writel(au_readl(GPIO2_DIR) & ~(1 << 6), GPIO2_DIR);	boot_swapboot = (au_readl(MEM_STSTAT) & (0x7 << 1)) | ((bcsr->status >> 6) & 0x1);	switch (boot_swapboot) {	case 0:	case 2:	case 8:	case 0xC:	case 0xD:		/* x16 NAND Flash */		nand_width = 0;		break;	case 1:	case 9:	case 3:	case 0xE:	case 0xF:		/* x8 NAND Flash */		nand_width = 1;		break;	default:		printk("Pb1550 NAND: bad boot:swap\n");		retval = -EINVAL;		goto outmem;	}#endif	/* Configure chip-select; normally done by boot code, e.g. YAMON */#ifdef NAND_STCFG	if (NAND_CS == 0) {		au_writel(NAND_STCFG,  MEM_STCFG0);		au_writel(NAND_STTIME, MEM_STTIME0);		au_writel(NAND_STADDR, MEM_STADDR0);	}	if (NAND_CS == 1) {		au_writel(NAND_STCFG,  MEM_STCFG1);		au_writel(NAND_STTIME, MEM_STTIME1);		au_writel(NAND_STADDR, MEM_STADDR1);	}	if (NAND_CS == 2) {		au_writel(NAND_STCFG,  MEM_STCFG2);		au_writel(NAND_STTIME, MEM_STTIME2);		au_writel(NAND_STADDR, MEM_STADDR2);	}	if (NAND_CS == 3) {		au_writel(NAND_STCFG,  MEM_STCFG3);		au_writel(NAND_STTIME, MEM_STTIME3);		au_writel(NAND_STADDR, MEM_STADDR3);	}#endif	/* Locate NAND chip-select in order to determine NAND phys address */	mem_staddr = 0x00000000;	if (((au_readl(MEM_STCFG0) & 0x7) == 0x5) && (NAND_CS == 0))		mem_staddr = au_readl(MEM_STADDR0);	else if (((au_readl(MEM_STCFG1) & 0x7) == 0x5) && (NAND_CS == 1))		mem_staddr = au_readl(MEM_STADDR1);	else if (((au_readl(MEM_STCFG2) & 0x7) == 0x5) && (NAND_CS == 2))		mem_staddr = au_readl(MEM_STADDR2);	else if (((au_readl(MEM_STCFG3) & 0x7) == 0x5) && (NAND_CS == 3))		mem_staddr = au_readl(MEM_STADDR3);	if (mem_staddr == 0x00000000) {		printk("Au1xxx NAND: ERROR WITH NAND CHIP-SELECT\n");		kfree(au1550_mtd);		return 1;	}	nand_phys = (mem_staddr << 4) & 0xFFFC0000;	p_nand = (void __iomem *)ioremap(nand_phys, 0x1000);	/* make controller and MTD agree */	if (NAND_CS == 0)		nand_width = au_readl(MEM_STCFG0) & (1 << 22);	if (NAND_CS == 1)		nand_width = au_readl(MEM_STCFG1) & (1 << 22);	if (NAND_CS == 2)		nand_width = au_readl(MEM_STCFG2) & (1 << 22);	if (NAND_CS == 3)		nand_width = au_readl(MEM_STCFG3) & (1 << 22);	/* Set address of hardware control function */	this->dev_ready = au1550_device_ready;	this->select_chip = au1550_select_chip;	this->cmdfunc = au1550_command;	/* 30 us command delay time */	this->chip_delay = 30;	this->ecc.mode = NAND_ECC_SOFT;	this->options = NAND_NO_AUTOINCR;	if (!nand_width)		this->options |= NAND_BUSWIDTH_16;	this->read_byte = (!nand_width) ? au_read_byte16 : au_read_byte;	au1550_write_byte = (!nand_width) ? au_write_byte16 : au_write_byte;	this->read_word = au_read_word;	this->write_buf = (!nand_width) ? au_write_buf16 : au_write_buf;	this->read_buf = (!nand_width) ? au_read_buf16 : au_read_buf;	this->verify_buf = (!nand_width) ? au_verify_buf16 : au_verify_buf;	/* Scan to find existence of the device */	if (nand_scan(au1550_mtd, 1)) {		retval = -ENXIO;		goto outio;	}	/* Register the partitions */	add_mtd_partitions(au1550_mtd, partition_info, ARRAY_SIZE(partition_info));	return 0; outio:	iounmap((void *)p_nand); outmem:	kfree(au1550_mtd);	return retval;}module_init(au1xxx_nand_init);/* * Clean up routine */static void __exit au1550_cleanup(void){	/* Release resources, unregister device */	nand_release(au1550_mtd);	/* Free the MTD device structure */	kfree(au1550_mtd);	/* Unmap */	iounmap((void *)p_nand);}module_exit(au1550_cleanup);MODULE_LICENSE("GPL");MODULE_AUTHOR("Embedded Edge, LLC");MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -