📄 mxc_nand.c
字号:
/* * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. * Copyright 2008 Sascha Hauer, kernel@pengutronix.de * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */#include <linux/delay.h>#include <linux/slab.h>#include <linux/init.h>#include <linux/module.h>#include <linux/mtd/mtd.h>#include <linux/mtd/nand.h>#include <linux/mtd/partitions.h>#include <linux/interrupt.h>#include <linux/device.h>#include <linux/platform_device.h>#include <linux/clk.h>#include <linux/err.h>#include <linux/io.h>#include <asm/mach/flash.h>#include <mach/mxc_nand.h>#define DRIVER_NAME "mxc_nand"/* Addresses for NFC registers */#define NFC_BUF_SIZE 0xE00#define NFC_BUF_ADDR 0xE04#define NFC_FLASH_ADDR 0xE06#define NFC_FLASH_CMD 0xE08#define NFC_CONFIG 0xE0A#define NFC_ECC_STATUS_RESULT 0xE0C#define NFC_RSLTMAIN_AREA 0xE0E#define NFC_RSLTSPARE_AREA 0xE10#define NFC_WRPROT 0xE12#define NFC_UNLOCKSTART_BLKADDR 0xE14#define NFC_UNLOCKEND_BLKADDR 0xE16#define NFC_NF_WRPRST 0xE18#define NFC_CONFIG1 0xE1A#define NFC_CONFIG2 0xE1C/* Addresses for NFC RAM BUFFER Main area 0 */#define MAIN_AREA0 0x000#define MAIN_AREA1 0x200#define MAIN_AREA2 0x400#define MAIN_AREA3 0x600/* Addresses for NFC SPARE BUFFER Spare area 0 */#define SPARE_AREA0 0x800#define SPARE_AREA1 0x810#define SPARE_AREA2 0x820#define SPARE_AREA3 0x830/* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register * for Command operation */#define NFC_CMD 0x1/* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register * for Address operation */#define NFC_ADDR 0x2/* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register * for Input operation */#define NFC_INPUT 0x4/* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register * for Data Output operation */#define NFC_OUTPUT 0x8/* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register * for Read ID operation */#define NFC_ID 0x10/* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register * for Read Status operation */#define NFC_STATUS 0x20/* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read * Status operation */#define NFC_INT 0x8000#define NFC_SP_EN (1 << 2)#define NFC_ECC_EN (1 << 3)#define NFC_INT_MSK (1 << 4)#define NFC_BIG (1 << 5)#define NFC_RST (1 << 6)#define NFC_CE (1 << 7)#define NFC_ONE_CYCLE (1 << 8)struct mxc_nand_host { struct mtd_info mtd; struct nand_chip nand; struct mtd_partition *parts; struct device *dev; void __iomem *regs; int spare_only; int status_request; int pagesize_2k; uint16_t col_addr; struct clk *clk; int clk_act; int irq; wait_queue_head_t irq_waitq;};/* Define delays in microsec for NAND device operations */#define TROP_US_DELAY 2000/* Macros to get byte and bit positions of ECC */#define COLPOS(x) ((x) >> 3)#define BITPOS(x) ((x) & 0xf)/* Define single bit Error positions in Main & Spare area */#define MAIN_SINGLEBIT_ERROR 0x4#define SPARE_SINGLEBIT_ERROR 0x1/* OOB placement block for use with hardware ecc generation */static struct nand_ecclayout nand_hw_eccoob_8 = { .eccbytes = 5, .eccpos = {6, 7, 8, 9, 10}, .oobfree = {{0, 5}, {11, 5}, }};static struct nand_ecclayout nand_hw_eccoob_16 = { .eccbytes = 5, .eccpos = {6, 7, 8, 9, 10}, .oobfree = {{0, 6}, {12, 4}, }};#ifdef CONFIG_MTD_PARTITIONSstatic const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };#endifstatic irqreturn_t mxc_nfc_irq(int irq, void *dev_id){ struct mxc_nand_host *host = dev_id; uint16_t tmp; tmp = readw(host->regs + NFC_CONFIG1); tmp |= NFC_INT_MSK; /* Disable interrupt */ writew(tmp, host->regs + NFC_CONFIG1); wake_up(&host->irq_waitq); return IRQ_HANDLED;}/* This function polls the NANDFC to wait for the basic operation to * complete by checking the INT bit of config2 register. */static void wait_op_done(struct mxc_nand_host *host, int max_retries, uint16_t param, int useirq){ uint32_t tmp; if (useirq) { if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) { tmp = readw(host->regs + NFC_CONFIG1); tmp &= ~NFC_INT_MSK; /* Enable interrupt */ writew(tmp, host->regs + NFC_CONFIG1); wait_event(host->irq_waitq, readw(host->regs + NFC_CONFIG2) & NFC_INT); tmp = readw(host->regs + NFC_CONFIG2); tmp &= ~NFC_INT; writew(tmp, host->regs + NFC_CONFIG2); } } else { while (max_retries-- > 0) { if (readw(host->regs + NFC_CONFIG2) & NFC_INT) { tmp = readw(host->regs + NFC_CONFIG2); tmp &= ~NFC_INT; writew(tmp, host->regs + NFC_CONFIG2); break; } udelay(1); } if (max_retries <= 0) DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n", __func__, param); }}/* This function issues the specified command to the NAND device and * waits for completion. */static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq){ DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); writew(cmd, host->regs + NFC_FLASH_CMD); writew(NFC_CMD, host->regs + NFC_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, cmd, useirq);}/* This function sends an address (or partial address) to the * NAND device. The address is used to select the source/destination for * a NAND command. */static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast){ DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast); writew(addr, host->regs + NFC_FLASH_ADDR); writew(NFC_ADDR, host->regs + NFC_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, addr, islast);}/* This function requests the NANDFC to initate the transfer * of data currently in the NANDFC RAM buffer to the NAND device. */static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id, int spare_only){ DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only); /* NANDFC buffer 0 is used for page read/write */ writew(buf_id, host->regs + NFC_BUF_ADDR); /* Configure spare or page+spare access */ if (!host->pagesize_2k) { uint16_t config1 = readw(host->regs + NFC_CONFIG1); if (spare_only) config1 |= NFC_SP_EN; else config1 &= ~(NFC_SP_EN); writew(config1, host->regs + NFC_CONFIG1); } writew(NFC_INPUT, host->regs + NFC_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, spare_only, true);}/* Requests NANDFC to initated the transfer of data from the * NAND device into in the NANDFC ram buffer. */static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id, int spare_only){ DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only); /* NANDFC buffer 0 is used for page read/write */ writew(buf_id, host->regs + NFC_BUF_ADDR); /* Configure spare or page+spare access */ if (!host->pagesize_2k) { uint32_t config1 = readw(host->regs + NFC_CONFIG1); if (spare_only) config1 |= NFC_SP_EN; else config1 &= ~NFC_SP_EN; writew(config1, host->regs + NFC_CONFIG1); } writew(NFC_OUTPUT, host->regs + NFC_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, spare_only, true);}/* Request the NANDFC to perform a read of the NAND device ID. */static void send_read_id(struct mxc_nand_host *host){ struct nand_chip *this = &host->nand; uint16_t tmp; /* NANDFC buffer 0 is used for device ID output */ writew(0x0, host->regs + NFC_BUF_ADDR); /* Read ID into main buffer */ tmp = readw(host->regs + NFC_CONFIG1); tmp &= ~NFC_SP_EN; writew(tmp, host->regs + NFC_CONFIG1); writew(NFC_ID, host->regs + NFC_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, 0, true); if (this->options & NAND_BUSWIDTH_16) { void __iomem *main_buf = host->regs + MAIN_AREA0; /* compress the ID info */ writeb(readb(main_buf + 2), main_buf + 1); writeb(readb(main_buf + 4), main_buf + 2); writeb(readb(main_buf + 6), main_buf + 3); writeb(readb(main_buf + 8), main_buf + 4); writeb(readb(main_buf + 10), main_buf + 5); }}/* This function requests the NANDFC to perform a read of the * NAND device status and returns the current status. */static uint16_t get_dev_status(struct mxc_nand_host *host){ void __iomem *main_buf = host->regs + MAIN_AREA1; uint32_t store; uint16_t ret, tmp; /* Issue status request to NAND device */ /* store the main area1 first word, later do recovery */ store = readl(main_buf); /* NANDFC buffer 1 is used for device status to prevent * corruption of read/write buffer on status requests. */ writew(1, host->regs + NFC_BUF_ADDR); /* Read status into main buffer */ tmp = readw(host->regs + NFC_CONFIG1); tmp &= ~NFC_SP_EN; writew(tmp, host->regs + NFC_CONFIG1); writew(NFC_STATUS, host->regs + NFC_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, 0, true); /* Status is placed in first word of main buffer */ /* get status, then recovery area 1 data */ ret = readw(main_buf); writel(store, main_buf); return ret;}/* This functions is used by upper layer to checks if device is ready */static int mxc_nand_dev_ready(struct mtd_info *mtd){ /* * NFC handles R/B internally. Therefore, this function * always returns status as ready. */ return 1;}static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode){ /* * If HW ECC is enabled, we turn it on during init. There is * no need to enable again here. */}static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc){ struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; /* * 1-Bit errors are automatically corrected in HW. No need for * additional correction. 2-Bit errors cannot be corrected by * HW ECC, so we need to return failure */ uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT); if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { DEBUG(MTD_DEBUG_LEVEL0, "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); return -1; } return 0;}static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code){ return 0;}static u_char mxc_nand_read_byte(struct mtd_info *mtd){ struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; uint8_t ret = 0; uint16_t col, rd_word; uint16_t __iomem *main_buf = host->regs + MAIN_AREA0; uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0; /* Check for status request */ if (host->status_request) return get_dev_status(host) & 0xFF; /* Get column for 16-bit access */ col = host->col_addr >> 1; /* If we are accessing the spare region */ if (host->spare_only) rd_word = readw(&spare_buf[col]); else rd_word = readw(&main_buf[col]); /* Pick upper/lower byte of word from RAM buffer */ if (host->col_addr & 0x1) ret = (rd_word >> 8) & 0xFF; else ret = rd_word & 0xFF; /* Update saved column address */ host->col_addr++; return ret;}static uint16_t mxc_nand_read_word(struct mtd_info *mtd){ struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; uint16_t col, rd_word, ret; uint16_t __iomem *p; DEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_read_word(col = %d)\n", host->col_addr); col = host->col_addr; /* Adjust saved column address */ if (col < mtd->writesize && host->spare_only) col += mtd->writesize; if (col < mtd->writesize) p = (host->regs + MAIN_AREA0) + (col >> 1); else p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1); if (col & 1) { rd_word = readw(p); ret = (rd_word >> 8) & 0xff; rd_word = readw(&p[1]); ret |= (rd_word << 8) & 0xff00; } else ret = readw(p); /* Update saved column address */ host->col_addr = col + 2; return ret;}/* Write data of length len to buffer buf. The data to be * written on NAND Flash is first copied to RAMbuffer. After the Data Input * Operation by the NFC, the data is written to NAND Flash */static void mxc_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len){ struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; int n, col, i = 0; DEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr, len); col = host->col_addr; /* Adjust saved column address */ if (col < mtd->writesize && host->spare_only) col += mtd->writesize; n = mtd->writesize + mtd->oobsize - col; n = min(len, n); DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n); while (n) { void __iomem *p; if (col < mtd->writesize) p = host->regs + MAIN_AREA0 + (col & ~3); else p = host->regs + SPARE_AREA0 - mtd->writesize + (col & ~3); DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__, __LINE__, p); if (((col | (int)&buf[i]) & 3) || n < 16) { uint32_t data = 0; if (col & 3 || n < 4) data = readl(p); switch (col & 3) { case 0: if (n) { data = (data & 0xffffff00) | (buf[i++] << 0); n--; col++; } case 1: if (n) { data = (data & 0xffff00ff) | (buf[i++] << 8); n--; col++; } case 2: if (n) { data = (data & 0xff00ffff) | (buf[i++] << 16); n--; col++; } case 3: if (n) { data = (data & 0x00ffffff) | (buf[i++] << 24); n--; col++; } } writel(data, p); } else { int m = mtd->writesize - col; if (col >= mtd->writesize) m += mtd->oobsize;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -