⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mxc_nand.c

📁 基于linux-2.6.28的mtd驱动
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. * Copyright 2008 Sascha Hauer, kernel@pengutronix.de * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */#include <linux/delay.h>#include <linux/slab.h>#include <linux/init.h>#include <linux/module.h>#include <linux/mtd/mtd.h>#include <linux/mtd/nand.h>#include <linux/mtd/partitions.h>#include <linux/interrupt.h>#include <linux/device.h>#include <linux/platform_device.h>#include <linux/clk.h>#include <linux/err.h>#include <linux/io.h>#include <asm/mach/flash.h>#include <mach/mxc_nand.h>#define DRIVER_NAME "mxc_nand"/* Addresses for NFC registers */#define NFC_BUF_SIZE		0xE00#define NFC_BUF_ADDR		0xE04#define NFC_FLASH_ADDR		0xE06#define NFC_FLASH_CMD		0xE08#define NFC_CONFIG		0xE0A#define NFC_ECC_STATUS_RESULT	0xE0C#define NFC_RSLTMAIN_AREA	0xE0E#define NFC_RSLTSPARE_AREA	0xE10#define NFC_WRPROT		0xE12#define NFC_UNLOCKSTART_BLKADDR	0xE14#define NFC_UNLOCKEND_BLKADDR	0xE16#define NFC_NF_WRPRST		0xE18#define NFC_CONFIG1		0xE1A#define NFC_CONFIG2		0xE1C/* Addresses for NFC RAM BUFFER Main area 0 */#define MAIN_AREA0		0x000#define MAIN_AREA1		0x200#define MAIN_AREA2		0x400#define MAIN_AREA3		0x600/* Addresses for NFC SPARE BUFFER Spare area 0 */#define SPARE_AREA0		0x800#define SPARE_AREA1		0x810#define SPARE_AREA2		0x820#define SPARE_AREA3		0x830/* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register * for Command operation */#define NFC_CMD            0x1/* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register * for Address operation */#define NFC_ADDR           0x2/* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register * for Input operation */#define NFC_INPUT          0x4/* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register * for Data Output operation */#define NFC_OUTPUT         0x8/* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register * for Read ID operation */#define NFC_ID             0x10/* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register * for Read Status operation */#define NFC_STATUS         0x20/* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read * Status operation */#define NFC_INT            0x8000#define NFC_SP_EN           (1 << 2)#define NFC_ECC_EN          (1 << 3)#define NFC_INT_MSK         (1 << 4)#define NFC_BIG             (1 << 5)#define NFC_RST             (1 << 6)#define NFC_CE              (1 << 7)#define NFC_ONE_CYCLE       (1 << 8)struct mxc_nand_host {	struct mtd_info		mtd;	struct nand_chip	nand;	struct mtd_partition	*parts;	struct device		*dev;	void __iomem		*regs;	int			spare_only;	int			status_request;	int			pagesize_2k;	uint16_t		col_addr;	struct clk		*clk;	int			clk_act;	int			irq;	wait_queue_head_t	irq_waitq;};/* Define delays in microsec for NAND device operations */#define TROP_US_DELAY   2000/* Macros to get byte and bit positions of ECC */#define COLPOS(x)  ((x) >> 3)#define BITPOS(x) ((x) & 0xf)/* Define single bit Error positions in Main & Spare area */#define MAIN_SINGLEBIT_ERROR 0x4#define SPARE_SINGLEBIT_ERROR 0x1/* OOB placement block for use with hardware ecc generation */static struct nand_ecclayout nand_hw_eccoob_8 = {	.eccbytes = 5,	.eccpos = {6, 7, 8, 9, 10},	.oobfree = {{0, 5}, {11, 5}, }};static struct nand_ecclayout nand_hw_eccoob_16 = {	.eccbytes = 5,	.eccpos = {6, 7, 8, 9, 10},	.oobfree = {{0, 6}, {12, 4}, }};#ifdef CONFIG_MTD_PARTITIONSstatic const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };#endifstatic irqreturn_t mxc_nfc_irq(int irq, void *dev_id){	struct mxc_nand_host *host = dev_id;	uint16_t tmp;	tmp = readw(host->regs + NFC_CONFIG1);	tmp |= NFC_INT_MSK; /* Disable interrupt */	writew(tmp, host->regs + NFC_CONFIG1);	wake_up(&host->irq_waitq);	return IRQ_HANDLED;}/* This function polls the NANDFC to wait for the basic operation to * complete by checking the INT bit of config2 register. */static void wait_op_done(struct mxc_nand_host *host, int max_retries,				uint16_t param, int useirq){	uint32_t tmp;	if (useirq) {		if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) {			tmp = readw(host->regs + NFC_CONFIG1);			tmp  &= ~NFC_INT_MSK;	/* Enable interrupt */			writew(tmp, host->regs + NFC_CONFIG1);			wait_event(host->irq_waitq,				readw(host->regs + NFC_CONFIG2) & NFC_INT);			tmp = readw(host->regs + NFC_CONFIG2);			tmp  &= ~NFC_INT;			writew(tmp, host->regs + NFC_CONFIG2);		}	} else {		while (max_retries-- > 0) {			if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {				tmp = readw(host->regs + NFC_CONFIG2);				tmp  &= ~NFC_INT;				writew(tmp, host->regs + NFC_CONFIG2);				break;			}			udelay(1);		}		if (max_retries <= 0)			DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",			      __func__, param);	}}/* This function issues the specified command to the NAND device and * waits for completion. */static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq){	DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);	writew(cmd, host->regs + NFC_FLASH_CMD);	writew(NFC_CMD, host->regs + NFC_CONFIG2);	/* Wait for operation to complete */	wait_op_done(host, TROP_US_DELAY, cmd, useirq);}/* This function sends an address (or partial address) to the * NAND device. The address is used to select the source/destination for * a NAND command. */static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast){	DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);	writew(addr, host->regs + NFC_FLASH_ADDR);	writew(NFC_ADDR, host->regs + NFC_CONFIG2);	/* Wait for operation to complete */	wait_op_done(host, TROP_US_DELAY, addr, islast);}/* This function requests the NANDFC to initate the transfer * of data currently in the NANDFC RAM buffer to the NAND device. */static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,			int spare_only){	DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);	/* NANDFC buffer 0 is used for page read/write */	writew(buf_id, host->regs + NFC_BUF_ADDR);	/* Configure spare or page+spare access */	if (!host->pagesize_2k) {		uint16_t config1 = readw(host->regs + NFC_CONFIG1);		if (spare_only)			config1 |= NFC_SP_EN;		else			config1 &= ~(NFC_SP_EN);		writew(config1, host->regs + NFC_CONFIG1);	}	writew(NFC_INPUT, host->regs + NFC_CONFIG2);	/* Wait for operation to complete */	wait_op_done(host, TROP_US_DELAY, spare_only, true);}/* Requests NANDFC to initated the transfer of data from the * NAND device into in the NANDFC ram buffer. */static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,		int spare_only){	DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);	/* NANDFC buffer 0 is used for page read/write */	writew(buf_id, host->regs + NFC_BUF_ADDR);	/* Configure spare or page+spare access */	if (!host->pagesize_2k) {		uint32_t config1 = readw(host->regs + NFC_CONFIG1);		if (spare_only)			config1 |= NFC_SP_EN;		else			config1 &= ~NFC_SP_EN;		writew(config1, host->regs + NFC_CONFIG1);	}	writew(NFC_OUTPUT, host->regs + NFC_CONFIG2);	/* Wait for operation to complete */	wait_op_done(host, TROP_US_DELAY, spare_only, true);}/* Request the NANDFC to perform a read of the NAND device ID. */static void send_read_id(struct mxc_nand_host *host){	struct nand_chip *this = &host->nand;	uint16_t tmp;	/* NANDFC buffer 0 is used for device ID output */	writew(0x0, host->regs + NFC_BUF_ADDR);	/* Read ID into main buffer */	tmp = readw(host->regs + NFC_CONFIG1);	tmp &= ~NFC_SP_EN;	writew(tmp, host->regs + NFC_CONFIG1);	writew(NFC_ID, host->regs + NFC_CONFIG2);	/* Wait for operation to complete */	wait_op_done(host, TROP_US_DELAY, 0, true);	if (this->options & NAND_BUSWIDTH_16) {		void __iomem *main_buf = host->regs + MAIN_AREA0;		/* compress the ID info */		writeb(readb(main_buf + 2), main_buf + 1);		writeb(readb(main_buf + 4), main_buf + 2);		writeb(readb(main_buf + 6), main_buf + 3);		writeb(readb(main_buf + 8), main_buf + 4);		writeb(readb(main_buf + 10), main_buf + 5);	}}/* This function requests the NANDFC to perform a read of the * NAND device status and returns the current status. */static uint16_t get_dev_status(struct mxc_nand_host *host){	void __iomem *main_buf = host->regs + MAIN_AREA1;	uint32_t store;	uint16_t ret, tmp;	/* Issue status request to NAND device */	/* store the main area1 first word, later do recovery */	store = readl(main_buf);	/* NANDFC buffer 1 is used for device status to prevent	 * corruption of read/write buffer on status requests. */	writew(1, host->regs + NFC_BUF_ADDR);	/* Read status into main buffer */	tmp = readw(host->regs + NFC_CONFIG1);	tmp &= ~NFC_SP_EN;	writew(tmp, host->regs + NFC_CONFIG1);	writew(NFC_STATUS, host->regs + NFC_CONFIG2);	/* Wait for operation to complete */	wait_op_done(host, TROP_US_DELAY, 0, true);	/* Status is placed in first word of main buffer */	/* get status, then recovery area 1 data */	ret = readw(main_buf);	writel(store, main_buf);	return ret;}/* This functions is used by upper layer to checks if device is ready */static int mxc_nand_dev_ready(struct mtd_info *mtd){	/*	 * NFC handles R/B internally. Therefore, this function	 * always returns status as ready.	 */	return 1;}static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode){	/*	 * If HW ECC is enabled, we turn it on during init. There is	 * no need to enable again here.	 */}static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,				 u_char *read_ecc, u_char *calc_ecc){	struct nand_chip *nand_chip = mtd->priv;	struct mxc_nand_host *host = nand_chip->priv;	/*	 * 1-Bit errors are automatically corrected in HW.  No need for	 * additional correction.  2-Bit errors cannot be corrected by	 * HW ECC, so we need to return failure	 */	uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {		DEBUG(MTD_DEBUG_LEVEL0,		      "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");		return -1;	}	return 0;}static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,				  u_char *ecc_code){	return 0;}static u_char mxc_nand_read_byte(struct mtd_info *mtd){	struct nand_chip *nand_chip = mtd->priv;	struct mxc_nand_host *host = nand_chip->priv;	uint8_t ret = 0;	uint16_t col, rd_word;	uint16_t __iomem *main_buf = host->regs + MAIN_AREA0;	uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0;	/* Check for status request */	if (host->status_request)		return get_dev_status(host) & 0xFF;	/* Get column for 16-bit access */	col = host->col_addr >> 1;	/* If we are accessing the spare region */	if (host->spare_only)		rd_word = readw(&spare_buf[col]);	else		rd_word = readw(&main_buf[col]);	/* Pick upper/lower byte of word from RAM buffer */	if (host->col_addr & 0x1)		ret = (rd_word >> 8) & 0xFF;	else		ret = rd_word & 0xFF;	/* Update saved column address */	host->col_addr++;	return ret;}static uint16_t mxc_nand_read_word(struct mtd_info *mtd){	struct nand_chip *nand_chip = mtd->priv;	struct mxc_nand_host *host = nand_chip->priv;	uint16_t col, rd_word, ret;	uint16_t __iomem *p;	DEBUG(MTD_DEBUG_LEVEL3,	      "mxc_nand_read_word(col = %d)\n", host->col_addr);	col = host->col_addr;	/* Adjust saved column address */	if (col < mtd->writesize && host->spare_only)		col += mtd->writesize;	if (col < mtd->writesize)		p = (host->regs + MAIN_AREA0) + (col >> 1);	else		p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1);	if (col & 1) {		rd_word = readw(p);		ret = (rd_word >> 8) & 0xff;		rd_word = readw(&p[1]);		ret |= (rd_word << 8) & 0xff00;	} else		ret = readw(p);	/* Update saved column address */	host->col_addr = col + 2;	return ret;}/* Write data of length len to buffer buf. The data to be * written on NAND Flash is first copied to RAMbuffer. After the Data Input * Operation by the NFC, the data is written to NAND Flash */static void mxc_nand_write_buf(struct mtd_info *mtd,				const u_char *buf, int len){	struct nand_chip *nand_chip = mtd->priv;	struct mxc_nand_host *host = nand_chip->priv;	int n, col, i = 0;	DEBUG(MTD_DEBUG_LEVEL3,	      "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,	      len);	col = host->col_addr;	/* Adjust saved column address */	if (col < mtd->writesize && host->spare_only)		col += mtd->writesize;	n = mtd->writesize + mtd->oobsize - col;	n = min(len, n);	DEBUG(MTD_DEBUG_LEVEL3,	      "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);	while (n) {		void __iomem *p;		if (col < mtd->writesize)			p = host->regs + MAIN_AREA0 + (col & ~3);		else			p = host->regs + SPARE_AREA0 -						mtd->writesize + (col & ~3);		DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,		      __LINE__, p);		if (((col | (int)&buf[i]) & 3) || n < 16) {			uint32_t data = 0;			if (col & 3 || n < 4)				data = readl(p);			switch (col & 3) {			case 0:				if (n) {					data = (data & 0xffffff00) |					    (buf[i++] << 0);					n--;					col++;				}			case 1:				if (n) {					data = (data & 0xffff00ff) |					    (buf[i++] << 8);					n--;					col++;				}			case 2:				if (n) {					data = (data & 0xff00ffff) |					    (buf[i++] << 16);					n--;					col++;				}			case 3:				if (n) {					data = (data & 0x00ffffff) |					    (buf[i++] << 24);					n--;					col++;				}			}			writel(data, p);		} else {			int m = mtd->writesize - col;			if (col >= mtd->writesize)				m += mtd->oobsize;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -