⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s3c2410.c

📁 基于linux-2.6.28的mtd驱动
💻 C
📖 第 1 页 / 共 2 页
字号:
/* linux/drivers/mtd/nand/s3c2410.c * * Copyright © 2004-2008 Simtec Electronics *	http://armlinux.simtec.co.uk/ *	Ben Dooks <ben@simtec.co.uk> * * Samsung S3C2410/S3C2440/S3C2412 NAND driver * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA*/#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG#define DEBUG#endif#include <linux/module.h>#include <linux/types.h>#include <linux/init.h>#include <linux/kernel.h>#include <linux/string.h>#include <linux/ioport.h>#include <linux/platform_device.h>#include <linux/delay.h>#include <linux/err.h>#include <linux/slab.h>#include <linux/clk.h>#include <linux/cpufreq.h>#include <linux/mtd/mtd.h>#include <linux/mtd/nand.h>#include <linux/mtd/nand_ecc.h>#include <linux/mtd/partitions.h>#include <asm/io.h>#include <asm/plat-s3c/regs-nand.h>#include <asm/plat-s3c/nand.h>#ifdef CONFIG_MTD_NAND_S3C2410_HWECCstatic int hardware_ecc = 1;#elsestatic int hardware_ecc = 0;#endif#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOPstatic int clock_stop = 1;#elsestatic const int clock_stop = 0;#endif/* new oob placement block for use with hardware ecc generation */static struct nand_ecclayout nand_hw_eccoob = {	.eccbytes = 3,	.eccpos = {0, 1, 2},	.oobfree = {{8, 8}}};/* controller and mtd information */struct s3c2410_nand_info;struct s3c2410_nand_mtd {	struct mtd_info			mtd;	struct nand_chip		chip;	struct s3c2410_nand_set		*set;	struct s3c2410_nand_info	*info;	int				scan_res;};enum s3c_cpu_type {	TYPE_S3C2410,	TYPE_S3C2412,	TYPE_S3C2440,};/* overview of the s3c2410 nand state */struct s3c2410_nand_info {	/* mtd info */	struct nand_hw_control		controller;	struct s3c2410_nand_mtd		*mtds;	struct s3c2410_platform_nand	*platform;	/* device info */	struct device			*device;	struct resource			*area;	struct clk			*clk;	void __iomem			*regs;	void __iomem			*sel_reg;	int				sel_bit;	int				mtd_count;	unsigned long			save_sel;	unsigned long			clk_rate;	enum s3c_cpu_type		cpu_type;#ifdef CONFIG_CPU_FREQ	struct notifier_block	freq_transition;#endif};/* conversion functions */static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd){	return container_of(mtd, struct s3c2410_nand_mtd, mtd);}static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd){	return s3c2410_nand_mtd_toours(mtd)->info;}static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev){	return platform_get_drvdata(dev);}static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev){	return dev->dev.platform_data;}static inline int allow_clk_stop(struct s3c2410_nand_info *info){	return clock_stop;}/* timing calculations */#define NS_IN_KHZ 1000000static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max){	int result;	result = (wanted * clk) / NS_IN_KHZ;	result++;	pr_debug("result %d from %ld, %d\n", result, clk, wanted);	if (result > max) {		printk("%d ns is too big for current clock rate %ld\n", wanted, clk);		return -1;	}	if (result < 1)		result = 1;	return result;}#define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))/* controller setup */static int s3c2410_nand_setrate(struct s3c2410_nand_info *info){	struct s3c2410_platform_nand *plat = info->platform;	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;	int tacls, twrph0, twrph1;	unsigned long clkrate = clk_get_rate(info->clk);	unsigned long set, cfg, mask;	unsigned long flags;	/* calculate the timing information for the controller */	info->clk_rate = clkrate;	clkrate /= 1000;	/* turn clock into kHz for ease of use */	if (plat != NULL) {		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);	} else {		/* default timings */		tacls = tacls_max;		twrph0 = 8;		twrph1 = 8;	}	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {		dev_err(info->device, "cannot get suitable timings\n");		return -EINVAL;	}	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",	       tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));	switch (info->cpu_type) {	case TYPE_S3C2410:		mask = (S3C2410_NFCONF_TACLS(3) |			S3C2410_NFCONF_TWRPH0(7) |			S3C2410_NFCONF_TWRPH1(7));		set = S3C2410_NFCONF_EN;		set |= S3C2410_NFCONF_TACLS(tacls - 1);		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);		break;	case TYPE_S3C2440:	case TYPE_S3C2412:		mask = (S3C2410_NFCONF_TACLS(tacls_max - 1) |			S3C2410_NFCONF_TWRPH0(7) |			S3C2410_NFCONF_TWRPH1(7));		set = S3C2440_NFCONF_TACLS(tacls - 1);		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);		break;	default:		/* keep compiler happy */		mask = 0;		set = 0;		BUG();	}	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);	local_irq_save(flags);	cfg = readl(info->regs + S3C2410_NFCONF);	cfg &= ~mask;	cfg |= set;	writel(cfg, info->regs + S3C2410_NFCONF);	local_irq_restore(flags);	return 0;}static int s3c2410_nand_inithw(struct s3c2410_nand_info *info){	int ret;	ret = s3c2410_nand_setrate(info);	if (ret < 0)		return ret; 	switch (info->cpu_type) { 	case TYPE_S3C2410:	default:		break; 	case TYPE_S3C2440: 	case TYPE_S3C2412:		/* enable the controller and de-assert nFCE */		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);	}	return 0;}/* select chip */static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip){	struct s3c2410_nand_info *info;	struct s3c2410_nand_mtd *nmtd;	struct nand_chip *this = mtd->priv;	unsigned long cur;	nmtd = this->priv;	info = nmtd->info;	if (chip != -1 && allow_clk_stop(info))		clk_enable(info->clk);	cur = readl(info->sel_reg);	if (chip == -1) {		cur |= info->sel_bit;	} else {		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {			dev_err(info->device, "invalid chip %d\n", chip);			return;		}		if (info->platform != NULL) {			if (info->platform->select_chip != NULL)				(info->platform->select_chip) (nmtd->set, chip);		}		cur &= ~info->sel_bit;	}	writel(cur, info->sel_reg);	if (chip == -1 && allow_clk_stop(info))		clk_disable(info->clk);}/* s3c2410_nand_hwcontrol * * Issue command and address cycles to the chip*/static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,				   unsigned int ctrl){	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);	if (cmd == NAND_CMD_NONE)		return;	if (ctrl & NAND_CLE)		writeb(cmd, info->regs + S3C2410_NFCMD);	else		writeb(cmd, info->regs + S3C2410_NFADDR);}/* command and control functions */static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,				   unsigned int ctrl){	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);	if (cmd == NAND_CMD_NONE)		return;	if (ctrl & NAND_CLE)		writeb(cmd, info->regs + S3C2440_NFCMD);	else		writeb(cmd, info->regs + S3C2440_NFADDR);}/* s3c2410_nand_devready() * * returns 0 if the nand is busy, 1 if it is ready*/static int s3c2410_nand_devready(struct mtd_info *mtd){	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;}static int s3c2440_nand_devready(struct mtd_info *mtd){	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;}static int s3c2412_nand_devready(struct mtd_info *mtd){	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;}/* ECC handling functions */static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,				     u_char *read_ecc, u_char *calc_ecc){	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);	unsigned int diff0, diff1, diff2;	unsigned int bit, byte;	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);	diff0 = read_ecc[0] ^ calc_ecc[0];	diff1 = read_ecc[1] ^ calc_ecc[1];	diff2 = read_ecc[2] ^ calc_ecc[2];	pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",		 __func__,		 read_ecc[0], read_ecc[1], read_ecc[2],		 calc_ecc[0], calc_ecc[1], calc_ecc[2],		 diff0, diff1, diff2);	if (diff0 == 0 && diff1 == 0 && diff2 == 0)		return 0;		/* ECC is ok */	/* sometimes people do not think about using the ECC, so check	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore	 * the error, on the assumption that this is an un-eccd page.	 */	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff	    && info->platform->ignore_unset_ecc)		return 0;	/* Can we correct this ECC (ie, one row and column change).	 * Note, this is similar to the 256 error code on smartmedia */	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {		/* calculate the bit position of the error */		bit  = ((diff2 >> 3) & 1) |		       ((diff2 >> 4) & 2) |		       ((diff2 >> 5) & 4);		/* calculate the byte position of the error */		byte = ((diff2 << 7) & 0x100) |		       ((diff1 << 0) & 0x80)  |		       ((diff1 << 1) & 0x40)  |		       ((diff1 << 2) & 0x20)  |		       ((diff1 << 3) & 0x10)  |		       ((diff0 >> 4) & 0x08)  |		       ((diff0 >> 3) & 0x04)  |		       ((diff0 >> 2) & 0x02)  |		       ((diff0 >> 1) & 0x01);		dev_dbg(info->device, "correcting error bit %d, byte %d\n",			bit, byte);		dat[byte] ^= (1 << bit);		return 1;	}	/* if there is only one bit difference in the ECC, then	 * one of only a row or column parity has changed, which	 * means the error is most probably in the ECC itself */	diff0 |= (diff1 << 8);	diff0 |= (diff2 << 16);	if ((diff0 & ~(1<<fls(diff0))) == 0)		return 1;	return -1;}/* ECC functions * * These allow the s3c2410 and s3c2440 to use the controller's ECC * generator block to ECC the data as it passes through]*/static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode){	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);	unsigned long ctrl;	ctrl = readl(info->regs + S3C2410_NFCONF);	ctrl |= S3C2410_NFCONF_INITECC;	writel(ctrl, info->regs + S3C2410_NFCONF);}static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode){	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);	unsigned long ctrl;	ctrl = readl(info->regs + S3C2440_NFCONT);	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT);}static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode){	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);	unsigned long ctrl;	ctrl = readl(info->regs + S3C2440_NFCONT);	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);}static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code){	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);	pr_debug("%s: returning ecc %02x%02x%02x\n", __func__,		 ecc_code[0], ecc_code[1], ecc_code[2]);	return 0;}static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code){	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);	ecc_code[0] = ecc;	ecc_code[1] = ecc >> 8;	ecc_code[2] = ecc >> 16;	pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);	return 0;}static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code){	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);	ecc_code[0] = ecc;	ecc_code[1] = ecc >> 8;	ecc_code[2] = ecc >> 16;	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);	return 0;}/* over-ride the standard functions for a little more speed. We can * use read/write block to move the data buffers to/from the controller*/static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len){	struct nand_chip *this = mtd->priv;	readsb(this->IO_ADDR_R, buf, len);}static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -