⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rtc_from4.c

📁 基于linux-2.6.28的mtd驱动
💻 C
📖 第 1 页 / 共 2 页
字号:
/* *  drivers/mtd/nand/rtc_from4.c * *  Copyright (C) 2004  Red Hat, Inc. * *  Derived from drivers/mtd/nand/spia.c *       Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Overview: *   This is a device driver for the AG-AND flash device found on the *   Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4), *   which utilizes the Renesas HN29V1G91T-30 part. *   This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device. */#include <linux/delay.h>#include <linux/kernel.h>#include <linux/init.h>#include <linux/slab.h>#include <linux/rslib.h>#include <linux/bitrev.h>#include <linux/module.h>#include <linux/mtd/compatmac.h>#include <linux/mtd/mtd.h>#include <linux/mtd/nand.h>#include <linux/mtd/partitions.h>#include <asm/io.h>/* * MTD structure for Renesas board */static struct mtd_info *rtc_from4_mtd = NULL;#define RTC_FROM4_MAX_CHIPS	2/* HS77x9 processor register defines */#define SH77X9_BCR1	((volatile unsigned short *)(0xFFFFFF60))#define SH77X9_BCR2	((volatile unsigned short *)(0xFFFFFF62))#define SH77X9_WCR1	((volatile unsigned short *)(0xFFFFFF64))#define SH77X9_WCR2	((volatile unsigned short *)(0xFFFFFF66))#define SH77X9_MCR	((volatile unsigned short *)(0xFFFFFF68))#define SH77X9_PCR	((volatile unsigned short *)(0xFFFFFF6C))#define SH77X9_FRQCR	((volatile unsigned short *)(0xFFFFFF80))/* * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor) *//* Address where flash is mapped */#define RTC_FROM4_FIO_BASE	0x14000000/* CLE and ALE are tied to address lines 5 & 4, respectively */#define RTC_FROM4_CLE		(1 << 5)#define RTC_FROM4_ALE		(1 << 4)/* address lines A24-A22 used for chip selection */#define RTC_FROM4_NAND_ADDR_SLOT3	(0x00800000)#define RTC_FROM4_NAND_ADDR_SLOT4	(0x00C00000)#define RTC_FROM4_NAND_ADDR_FPGA	(0x01000000)/* mask address lines A24-A22 used for chip selection */#define RTC_FROM4_NAND_ADDR_MASK	(RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)/* FPGA status register for checking device ready (bit zero) */#define RTC_FROM4_FPGA_SR		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)#define RTC_FROM4_DEVICE_READY		0x0001/* FPGA Reed-Solomon ECC Control register */#define RTC_FROM4_RS_ECC_CTL		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)#define RTC_FROM4_RS_ECC_CTL_CLR	(1 << 7)#define RTC_FROM4_RS_ECC_CTL_GEN	(1 << 6)#define RTC_FROM4_RS_ECC_CTL_FD_E	(1 << 5)/* FPGA Reed-Solomon ECC code base */#define RTC_FROM4_RS_ECC		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)#define RTC_FROM4_RS_ECCN		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)/* FPGA Reed-Solomon ECC check register */#define RTC_FROM4_RS_ECC_CHK		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)#define RTC_FROM4_RS_ECC_CHK_ERROR	(1 << 7)#define ERR_STAT_ECC_AVAILABLE		0x20/* Undefine for software ECC */#define RTC_FROM4_HWECC	1/* Define as 1 for no virtual erase blocks (in JFFS2) */#define RTC_FROM4_NO_VIRTBLOCKS	0/* * Module stuff */static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);static const struct mtd_partition partition_info[] = {	{	 .name = "Renesas flash partition 1",	 .offset = 0,	 .size = MTDPART_SIZ_FULL},};#define NUM_PARTITIONS 1/* *	hardware specific flash bbt decriptors *	Note: this is to allow debugging by disabling *		NAND_BBT_CREATE and/or NAND_BBT_WRITE * */static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };static struct nand_bbt_descr rtc_from4_bbt_main_descr = {	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,	.offs = 40,	.len = 4,	.veroffs = 44,	.maxblocks = 4,	.pattern = bbt_pattern};static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,	.offs = 40,	.len = 4,	.veroffs = 44,	.maxblocks = 4,	.pattern = mirror_pattern};#ifdef RTC_FROM4_HWECC/* the Reed Solomon control structure */static struct rs_control *rs_decoder;/* *      hardware specific Out Of Band information */static struct nand_ecclayout rtc_from4_nand_oobinfo = {	.eccbytes = 32,	.eccpos = {		   0, 1, 2, 3, 4, 5, 6, 7,		   8, 9, 10, 11, 12, 13, 14, 15,		   16, 17, 18, 19, 20, 21, 22, 23,		   24, 25, 26, 27, 28, 29, 30, 31},	.oobfree = {{32, 32}}};#endif/* * rtc_from4_hwcontrol - hardware specific access to control-lines * @mtd:	MTD device structure * @cmd:	hardware control command * * Address lines (A5 and A4) are used to control Command and Address Latch * Enable on this board, so set the read/write address appropriately. * * Chip Enable is also controlled by the Chip Select (CS5) and * Address lines (A24-A22), so no action is required here. * */static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,				unsigned int ctrl){	struct nand_chip *chip = (mtd->priv);	if (cmd == NAND_CMD_NONE)		return;	if (ctrl & NAND_CLE)		writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);	else		writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);}/* * rtc_from4_nand_select_chip - hardware specific chip select * @mtd:	MTD device structure * @chip:	Chip to select (0 == slot 3, 1 == slot 4) * * The chip select is based on address lines A24-A22. * This driver uses flash slots 3 and 4 (A23-A22). * */static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip){	struct nand_chip *this = mtd->priv;	this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);	this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);	switch (chip) {	case 0:		/* select slot 3 chip */		this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);		this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);		break;	case 1:		/* select slot 4 chip */		this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);		this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);		break;	}}/* * rtc_from4_nand_device_ready - hardware specific ready/busy check * @mtd:	MTD device structure * * This board provides the Ready/Busy state in the status register * of the FPGA.  Bit zero indicates the RDY(1)/BSY(0) signal. * */static int rtc_from4_nand_device_ready(struct mtd_info *mtd){	unsigned short status;	status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));	return (status & RTC_FROM4_DEVICE_READY);}/* * deplete - code to perform device recovery in case there was a power loss * @mtd:	MTD device structure * @chip:	Chip to select (0 == slot 3, 1 == slot 4) * * If there was a sudden loss of power during an erase operation, a * "device recovery" operation must be performed when power is restored * to ensure correct operation.  This routine performs the required steps * for the requested chip. * * See page 86 of the data sheet for details. * */static void deplete(struct mtd_info *mtd, int chip){	struct nand_chip *this = mtd->priv;	/* wait until device is ready */	while (!this->dev_ready(mtd)) ;	this->select_chip(mtd, chip);	/* Send the commands for device recovery, phase 1 */	this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);	this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);	/* Send the commands for device recovery, phase 2 */	this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);	this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);}#ifdef RTC_FROM4_HWECC/* * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function * @mtd:	MTD device structure * @mode:	I/O mode; read or write * * enable hardware ECC for data read or write * */static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode){	volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);	unsigned short status;	switch (mode) {	case NAND_ECC_READ:		status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;		*rs_ecc_ctl = status;		break;	case NAND_ECC_READSYN:		status = 0x00;		*rs_ecc_ctl = status;		break;	case NAND_ECC_WRITE:		status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;		*rs_ecc_ctl = status;		break;	default:		BUG();		break;	}}/* * rtc_from4_calculate_ecc - hardware specific code to read ECC code * @mtd:	MTD device structure * @dat:	buffer containing the data to generate ECC codes * @ecc_code	ECC codes calculated * * The ECC code is calculated by the FPGA.  All we have to do is read the values * from the FPGA registers. * * Note: We read from the inverted registers, since data is inverted before * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code *

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -