📄 normray.c
字号:
eut = eut->euCW;
} while (eut!=f->eu);
/* ray exits at edge with smallest positive dsigma */
if (eusmall!=NULL) {
dsigma = small;
eu = eusmall;
/* but if no dsigma>0, choose the edge we are up against */
} else {
dsigma = 0.0;
eu = euzero;
}
/* update dynamic ray parameters */
evaluateDynamic(dsigma,px,pz,dsdx,dsdz,&q1,&p1,&q2,&p2,&kmah);
/* update ray parameters */
sigma += dsigma;
ddt = dsigma*(s00+dsdx*x+dsdz*z
+dsigma*(0.5*(dsdx*px+dsdz*pz)
+dsigma*(0.0833333*(dsdx*dsdx+dsdz*dsdz))));
t += ddt;
x += dsigma*(px+0.25*dsdx*dsigma);
z += dsigma*(pz+0.25*dsdz*dsigma);
px += 0.5*dsdx*dsigma;
pz += 0.5*dsdz*dsigma;
/* don't let ray exit too close to a vertex */
xa = eu->vu->v->y; dx = eu->euCW->vu->v->y-xa;
za = eu->vu->v->x; dz = eu->euCW->vu->v->x-za;
frac = (ABS(dx)>ABS(dz))?(x-xa)/dx:(z-za)/dz;
if (frac<0.0001) {
x = xa+0.0001*dx;
z = za+0.0001*dz;
} else if (frac>0.9999) {
x = xa+0.9999*dx;
z = za+0.9999*dz;
}
/* compute contribution due to attenuation */
if (qfac!=FLT_MAX)
atten += ddt/qfac;
else
atten = 0;
/* return new raystep */
rs->rsNext = (RayStep*)ealloc1(1,sizeof(RayStep));
rs = rs->rsNext;
rs->sigma = sigma;
rs->x = x;
rs->z = z;
rs->px = px;
rs->pz = pz;
rs->t = t;
rs->q1 = q1;
rs->p1 = p1;
rs->q2 = q2;
rs->p2 = p2;
rs->kmah = kmah;
rs->nref = nref;
rs->eu = eu;
rs->f = f;
rs->rsNext = NULL;
rs->atten = atten;
rs->ampli = ampli;
rs->ampliphase = ampliphase;
return rs;
}
static RayStep* traceRayAcrossEdge (RayStep *rs, FILE *infofp)
/* Trace ray across edge. */
/* If successful, return pointer to new RayStep. */
/* If unsuccessful, return NULL. */
/* Failure to trace across an edge is because: */
/* (1) the ray was incident with angle greater than the critical angle, or */
/* (2) the ray is incident at a boundary edge */
{
int kmah,nref;
float sigma,x,z,px,pz,t,q1,p1,q2,p2,temp1,temp2,
s00,s1,ds1dx,ds1dz,s2,ds2dx,ds2dz,
px1,pz1,px1r,pz1r,px2r,pz2r,pz2rs,
c1ov1,c2ov2,oc2s,g,cterm,iterm,
fac1,fac2,dv1dl,dv2dl,dv1dm,dv2dm,
scale,gx,gz,hx,h_z,frac,dx,dz,taper;
float ampli,atten,dens1,dens2,ampliphase,coeff;
EdgeUse *eu,*eum;
EdgeUseAttributes *eua,*euma;
Face *f;
FaceAttributes *fa;
/* get input parameters */
sigma = rs->sigma;
x = rs->x;
z = rs->z;
px = rs->px;
pz = rs->pz;
t = rs->t;
q1 = rs->q1;
p1 = rs->p1;
q2 = rs->q2;
p2 = rs->p2;
kmah = rs->kmah;
nref = rs->nref;
eu = rs->eu;
f = rs->f;
atten = rs->atten;
ampli = rs->ampli;
ampliphase = rs->ampliphase;
/* check for boundary */
if (eu->euMate->f==NULL) {
if (infofp!=NULL)
fprintf(infofp,"Transmitted outside model. "
"Ray stopped.\n");
return NULL;
}
/* determine sloth on this side of edge */
fa = f->fa;
s00 = fa->s00;
ds1dx = fa->dsdx;
ds1dz = fa->dsdz;
s1 = s00+ds1dx*x+ds1dz*z;
/* determine density on this side */
dens1 = fa->dens;
/* determine sloth on other side of edge */
eum = eu->euMate;
f = eum->f;
fa = f->fa;
s00 = fa->s00;
ds2dx = fa->dsdx;
ds2dz = fa->dsdz;
s2 = s00+ds2dx*x+ds2dz*z;
/* determine density on other side of the edge */
dens2 = fa->dens;
/* edge vector */
dx = eum->vu->v->y-eu->vu->v->y;
dz = eum->vu->v->x-eu->vu->v->x;
/* fractional distance along edge */
frac = (ABS(dx)>ABS(dz)) ? (x-eu->vu->v->y)/dx : (z-eu->vu->v->x)/dz;
/* here is speeding up potential */
/* linearly interpolate unit vector g tangent to edge */
eua = eu->eua;
euma = eum->eua;
if (eua!=NULL && euma!=NULL) {
gx = frac*euma->tx-(1.0-frac)*eua->tx;
gz = frac*euma->tz-(1.0-frac)*eua->tz;
} else {
gx = -dx;
gz = -dz;
}
scale = 1.0/sqrt(gx*gx+gz*gz);
gx *= scale;
gz *= scale;
/* unit vector h normal to edge */
hx = -gz;
h_z = gx;
/* remember ray parameters on this side */
px1 = px;
pz1 = pz;
/* rotated ray parameters on this side */
px1r = px*h_z-pz*hx;
pz1r = px*hx+pz*h_z;
/* rotated ray parameters on other side */
px2r = px1r;
pz2rs = s2-px2r*px2r;
/* post-critical incidence*/
if (pz2rs<=0.0) {
if (infofp!=NULL)
fprintf(infofp,"Post-critical transmission. "
"Ray stopped.\n");
return NULL;
}
pz2r = sqrt(pz2rs);
/* ray parameters on other side */
px = px2r*h_z+pz2r*hx;
pz = pz2r*h_z-px2r*hx;
/* curvature term */
c1ov1 = pz1r;
c2ov2 = pz2r;
oc2s = s2/pz2rs;
if (eua!=NULL && euma!=NULL) {
g = frac*euma->c-(1.0-frac)*eua->c;
cterm = g*oc2s*(c1ov1-c2ov2);
} else {
cterm = 0.0;
}
/* update dynamic ray parameters */
scale = (pz2r*sqrt(s1))/(pz1r*sqrt(s2));
q1 = q1*scale;
p1 = p1/scale+cterm*q1;
q2 = q2*scale;
p2 = p2/scale+cterm*q2;
/* velocity derivatives tangent and normal to ray */
fac1 = -0.5/(s1*s1);
fac2 = -0.5/(s2*s2);
dv1dl = fac1*(px1*ds1dx+pz1*ds1dz);
dv2dl = fac2*(px*ds2dx+pz*ds2dz);
dv1dm = fac1*(pz1*ds1dx-px1*ds1dz);
dv2dm = fac2*(pz*ds2dx-px*ds2dz);
/* inhomogeneity term */
iterm = -px1r*oc2s
*(2.0*(dv1dm*c1ov1-dv2dm*c2ov2)+px1r*(dv1dl-dv2dl));
/* update dynamic ray parameters */
p1 += iterm*q1;
p2 += iterm*q2;
/* transmission effects on amplitudes */
if (ABS(s1-s2)>0.001 || dens1!=dens2) {
if (infofp!=NULL)
fprintf(infofp,"Transmitted WITH "
"influence on amplitude.\n");
if (dens1==FLT_MAX)
dens1 = dens2 = 1.0;
temp1 = dens2/dens1;
temp2 = pz2r/pz1r;
coeff = 1.0+(temp1-temp2)/(temp1+temp2);
/* check if too close to critical */
taper = (px1r*px1r)/s2;
taper = (taper>TAPER) ? cos((taper-TAPER)*5.0*PI) : 1.0;
/* complete amplitude coeff */
ampli *= coeff*sqrt(pz2r/pz1r)*taper;
if (infofp!=NULL) {
fprintf(infofp,
" --incident side: v1=%g dens1=%g "
"incidence angle=%g\n",
1/sqrt(s1),dens1,acos(pz1r/sqrt(s1))*180/PI);
fprintf(infofp,
" --opposite side: v2=%g dens2=%g "
"refracted angle=%g\n",
1/sqrt(s2),dens2,acos(pz2r/sqrt(s2))*180/PI);
fprintf(infofp,
" --transmission coeff: %g\n",coeff);
fprintf(infofp,
" --critical transm. taper: %g\n",taper);
fprintf(infofp,
" --total ampli. coeff: %g\n",ampli);
}
/* grazing incidence*/
if (pz1r*pz1r<=0.008*s1) {
if (infofp!=NULL)
fprintf(infofp,"Grazing incidence. "
"Ray stopped.\n");
return NULL;
}
} else if (infofp!=NULL) {
fprintf(infofp,"Transmitted WITHOUT influencing amplitude.\n");
}
/* return new raystep */
rs->rsNext = (RayStep*)ealloc1(1,sizeof(RayStep));
rs = rs->rsNext;
rs->sigma = sigma;
rs->x = x;
rs->z = z;
rs->px = px;
rs->pz = pz;
rs->t = t;
rs->q1 = q1;
rs->p1 = p1;
rs->q2 = q2;
rs->p2 = p2;
rs->kmah = kmah;
rs->nref = nref;
rs->eu = eum;
rs->f = f;
rs->rsNext = NULL;
rs->ampli = ampli;
rs->ampliphase = ampliphase;
rs->atten = atten;
return rs;
}
static RayStep* reflectRayFromEdge (RayStep *rs, FILE *infofp)
/* Reflect ray from edge and return pointer to new RayStep. */
{
int kmah,nref;
float sigma,x,z,px,pz,t,q1,p1,q2,p2,
s00,dsdx,dsdz,s,coeff,
px1,pz1,pxr,pzr,
c1ov1,c2ov2,oc2s,g,cterm,iterm,
dv1dl,dv2dl,dv1dm,dv2dm,
scale,gx,gz,hx,h_z,frac,dx,dz;
float atten,ampli,ampliphase,dens1,dens2,s2,
ds2dx,ds2dz,temp1,temp2;
EdgeUse *eu,*eum;
EdgeUseAttributes *eua,*euma;
Face *f,*fn;
FaceAttributes *fa;
/* get input parameters */
sigma = rs->sigma;
x = rs->x;
z = rs->z;
px = rs->px;
pz = rs->pz;
t = rs->t;
q1 = rs->q1;
p1 = rs->p1;
q2 = rs->q2;
p2 = rs->p2;
kmah = rs->kmah;
nref = rs->nref;
eu = rs->eu;
f = rs->f;
ampli = rs->ampli;
ampliphase = rs->ampliphase;
atten = rs->atten;
/* determine sloth on incident side of edge */
fa = f->fa;
s00 = fa->s00;
dsdx = fa->dsdx;
dsdz = fa->dsdz;
s = s00+dsdx*x+dsdz*z;
/* determine dens on incident side of edge */
dens1 = fa->dens;
/* edge vector */
eum = eu->euMate;
/* determine sloth on other side of edge */
fn = eum->f;
fa = fn->fa;
s00 = fa->s00;
ds2dx = fa->dsdx;
ds2dz = fa->dsdz;
s2 = s00+ds2dx*x+ds2dz*z;
/* determine density on other side of the edge */
dens2 = fa->dens;
if (dens1==FLT_MAX) dens1 = 1.0;
if (dens2==FLT_MAX) dens2 = 1.0;
dx = eum->vu->v->y-eu->vu->v->y;
dz = eum->vu->v->x-eu->vu->v->x;
/* fractional distance along edge */
frac = (ABS(dx)>ABS(dz)) ? (x-eu->vu->v->y)/dx : (z-eu->vu->v->x)/dz;
/* linearly interpolate unit vector g tangent to edge */
eua = eu->eua;
euma = eum->eua;
gx = frac*euma->tx-(1.0-frac)*eua->tx;
gz = frac*euma->tz-(1.0-frac)*eua->tz;
scale = 1.0/sqrt(gx*gx+gz*gz);
gx *= scale;
gz *= scale;
/* unit vector h normal to edge */
hx = -gz;
h_z = gx;
/* remember incident ray parameters */
px1 = px;
pz1 = pz;
/* rotated incident ray parameters */
pxr = px*h_z-pz*hx;
pzr = px*hx+pz*h_z;
/* rotated reflected ray parameters */
pxr = pxr;
pzr = -pzr;
/* reflected ray parameters */
px = pxr*h_z+pzr*hx;
pz = pzr*h_z-pxr*hx;
/* curvature term */
c1ov1 = c2ov2 = -pzr;
oc2s = s/(pzr*pzr);
g = frac*euma->c-(1.0-frac)*eua->c;
cterm = g*oc2s*(c1ov1+c2ov2);
/* update dynamic ray parameters */
scale = -c2ov2/c1ov1;
q1 = q1*scale;
p1 = p1/scale+cterm*q1;
q2 = q2*scale;
p2 = p2/scale+cterm*q2;
/* if sloth not constant */
if (dsdx!=0.0 || dsdz!=0.0) {
/* velocity derivatives tangent and normal to ray */
scale = -0.5/(s*s);
dv1dl = scale*(px1*dsdx+pz1*dsdz);
dv2dl = scale*(px*dsdx+pz*dsdz);
dv1dm = scale*(pz1*dsdx-px1*dsdz);
dv2dm = scale*(pz*dsdx-px*dsdz);
/* inhomogeneity term */
iterm = -pxr*oc2s
*(2.0*(dv1dm*c1ov1+dv2dm*c2ov2)+pxr*(dv1dl-dv2dl));
/* update dynamic ray parameters */
p1 += iterm*q1;
p2 += iterm*q2;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -