📄 contents.m
字号:
% Approximate reinforcement learning functions%% fuzzyqi - Implements model-based, offline Q-iteration with fuzzy approximation% tilingqi - Tile-coding Q-iteration% startupapproxrl - Startup script for the approximate RL package%% Subdirectories:% /systems - Contains system (problem) definitions for approximate RL% /tiling - Tiling implementation% /demo - Demonstration scripts% /priv - Private functions (plot history)% ----------------------% Other information of general interest follows% Conventional variable names used in approximate RL scripts:% % Vectors / structures:% theta - parameter vector / matrix of the approximator% PHI` - activation matrix for basis functions approximator% P - projection matrix, if needed% MDP - precomputed MDP structure. Field F record the next state (or activation of next state), % R the reward for all (xi, uj) in X0 x U0% % Dimensionality:% DIMS - structure recording all dimensions needed in the problem% X, U - for state /input quantization for the approximator% X0, U0 - for state /input samples if different from the quantization% N, M - number of params of the approximator accross state and action dimensions% N0, M0 - number of state / input samples, if different from the above% dimx, dimu - n-d dimensionality of X and U% dimx0, dimu0- n-d dimensionality of X0 and U0, if different from the above% p, q - number of state / output variables (also indices)% i, j - flat indices of state/output sample, or state/input approximator parameters% ii, jj - n-d indices of state/output sample, or state/input approximator parameters
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -