⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 contents.m

📁 approximate reinforcement learning
💻 M
字号:
% Approximate reinforcement learning functions%% fuzzyqi           - Implements model-based, offline Q-iteration with fuzzy approximation% tilingqi          - Tile-coding Q-iteration% startupapproxrl   - Startup script for the approximate RL package%% Subdirectories:% /systems          - Contains system (problem) definitions for approximate RL% /tiling           - Tiling implementation% /demo             - Demonstration scripts% /priv				- Private functions (plot history)% ----------------------% Other information of general interest follows% Conventional variable names used in approximate RL scripts:% % Vectors / structures:% theta       - parameter vector / matrix of the approximator% PHI`        - activation matrix for basis functions approximator% P           - projection matrix, if needed% MDP         - precomputed MDP structure. Field F record the next state (or activation of next state), %               R the reward for all (xi, uj) in X0 x U0% % Dimensionality:% DIMS        - structure recording all dimensions needed in the problem% X, U        - for state /input quantization for the approximator% X0, U0      - for state /input samples if different from the quantization% N, M        - number of params of the approximator accross state and action dimensions% N0, M0      - number of state / input samples, if different from the above% dimx, dimu  - n-d dimensionality of X and U% dimx0, dimu0- n-d dimensionality of X0 and U0, if different from the above% p, q        - number of state / output variables (also indices)% i, j        - flat indices of state/output sample, or state/input approximator parameters% ii, jj      - n-d indices of state/output sample, or state/input approximator parameters

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -