⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sample_mdp.m

📁 approximate reinforcement learning
💻 M
字号:
function [xplus, rplus] = sample_mdp(m, x, u)%  Implements the discrete-time dynamics of the Markov decision process.%  [XPLUS, RPLUS] = DOUBLEINT_MDP(M, X, U)%  Parameters:%   M   - the model specification. Typically contains the fields (all structures)%           phys - physical parameters%           disc - discretization configuration%           goal - goal configuration%       but the actual structure may depend on the particular MDP.%   X   - current state, x(k)%   U 	- command u(k)%  Returns:%   XPLUS       - state at next sample, x(k+1)%   RPLUS       - ensuing reward, r(k+1)% compute here the next state and rewardxplus = 0 * m.phys.a * x + 0 * u;rplus = 0;% END sample_mdp() RETURNING xplus, rplus ===============================================

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -